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Abstract

Variational Results and Solutions in Gauge Gravity and a Bifurcation
Analysis of Black Hole Orbital Dynamics

Bruce H. Dean

An analysis of all known spherically symmetric solutions to the field equations
originating from the Riemann tensor quadratic curvature Lagrangian is presented.  A new
exact solution is found for the field equation originating from the “energy-momentum”
equation of the gauge gravity theory.  Imposing equivalence between the Palatini and
standard variational field equations yields an algebraic condition that restricts the number
spacetime solutions to gauge gravity.  A class of spherically symmetric solutions to the
conformally invariant theory of gravitation is shown to be shared by the gauge gravity
field equations.  An analysis of a spherically symmetric solution to the conformal gravity
field equations is also presented.

Point particle orbital dynamics in both the Schwarzschild and Reissner-Nordström
black hole spacetimes are analyzed as 2-d conservative bifurcation phenomena.  The
classification is based on a study of coalescing fixed points and the parameter values at
which these bifurcations occur.  Physically distinct behaviors are separated by bifurcation
points while dynamically distinct cases are divided into various regions of the phase-
plane by the separatrix.  The Schwarzschild dynamics exhibit both saddle-center and
transcritical bifurcation points and a calculation of periastron precession is presented that
incorporates a phase-plane analysis of the relativistic equations of motion.  Level curves
of constant energy are illustrated for both timelike and null geodesics and a phase-plane
analysis of dynamical invariance between the proper and coordinate time reference
frames is discussed. The Reissner-Nordström dynamics exhibit saddle-center,
transcritical, pseudo-transcritical, and additional bifurcations that combine all three
previous bifurcations in various combinations.  Periastron precession in the Reissner-
Nordström spacetime is analyzed using the phase-plane and bifurcation techniques and
extended to include a bifurcation point of the dynamics.  A numerical solution at these
parameter values illustrates that such orbits typically yield a much larger precession value
compared to the standard value for timelike precession.  The “acausal” geodesics
considered by Brigman are also discussed and their precession value is calculated.
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Chapter 1   Introduction

Einstein’s theory of general relativity [1] is a classical theory of the gravitational

field.  A very compelling aspect of the theory is that it is expressible within the

mathematical framework of Riemannian geometry.  As a result, the Newtonian concepts

associated with gravitational forces are replaced by more abstract ideas developed from

analysis on manifolds.  The power in this identification is evidenced by the range of new

and subtle physical phenomena that are predicted by Einstein’s theory – e.g., light

bending, periastron precession, red shift, and time delay of radar signals - phenomena that

might otherwise have gone unnoticed or unexplained had it not been for the subsequent

geometric analogies drawn between space, time, and curved manifolds.  But the pattern in

these developments is not altogether new - physicists have always benefited from more

abstract representations of their concepts and theories.  The hope is that by translating

familiar ideas into a more abstract setting that new relations or physical consequences of

a given theory will be made immediately obvious.  Therefore, it comes as no surprise that

general relativity itself has been analyzed and recast into a variety of different forms in

attempts to generalize it.  The earliest attempts along these lines were made by Einstein

himself [2].

Part I. Gauge Gravity

Of the many approaches that have been considered in attempts to generalize

Einstein’s theory, probably the simplest is to start from the alternative scalar invariants

that may be used to base an action principle.  Since Einstein’s theory is already linear in

the Ricci scalar - a natural choice would seem to be the quadratic curvature Lagrangians

that may be formed by contracting the Riemann tensor onto itself.  The combinations that

may be considered are given by 2R , R Rρσ
ρσ , and R Rρ σ µν

σµν ρ
⋅

⋅ ⋅  (R is the Ricci scalar,

Rµν  is the Ricci tensor, and R ρ
σµν  is the Riemann tensor).  As a result, there have been

many investigations that begin with these quadratic curvature Lagrangians and various

linear combinations of them as the starting point for alternative theories of gravitation.

The original motivation for such work came from the desire to unify gravitation with

electromagnetism, and also to find a more general algebraic starting point from which to
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base Einstein’s theory.  The earliest such attempts were made by Weyl [3], Pauli [4],

Eddington [5], and Lanczos [6].  Eddington considered the Lagrangians: R Rρσ
ρσ  and

R Rρ σ µν
σµν ρ

⋅
⋅ ⋅ , while Weyl and Lanczos considered these and also 2R .  Additional analysis

was later given by Gregory [7], Buchdahl [8], Arnowitt [9], Stephenson [10], Kilmister

[11], and Thompson [12].  The work of Lanczos was especially important in that he

showed a certain linear combination of these Lagrangians gives an identity with respect

to variations of the metric, i.e., the Gauss-Bonnet topological invariant.  As a result, the

number of independent quadratic curvature contractions is reduced from three to two.

A secondary motivation for considering the quadratic curvature Lagrangians came

from the realization that the gravitational field should be regarded as an interaction in the

same sense as the other fundamental interactions of nature.  The hope was that by

imitating the mathematical form of Yang-Mills gauge theory that gravitation could be

derived in a framework that would suggest an obvious avenue towards unification with

the other fundamental interactions.  Therefore, by following a parallel with Yang-Mills

gauge theory, it was believed that general relativity could be recast as a gauge theory

based on the Lorentz group and that gravitation would arise as an interaction manifested

through the local Lorentz invariance of the theory.  This approach was first considered by

Utiyama [13] based on the Lorentz group and then later extended by Kibble [14] to

include the full inhomogeneous Lorentz group.  But these investigations did not consider

a quadratic curvature Lagrangian in their approach and even Yang [15] commented later

that Utiyama’s investigation was an unnatural interpretation of gauge theory.  The most

direct algebraic parallel with Yang-Mills gauge theory required the Lagrangian to be

quadratic in  the Riemann tensor.

Lichnerowicz [16] was the first to consider the field equations, 0R ρ
ρ σµν∇ = , by

themselves, as the basis for a theory of gravitation.  These field equations originate from

the Riemann tensor quadratic Lagrangian under the assumption that the connection is in

Christoffel form after a Palatini variational procedure is applied with respect to the

connection.  Kilmister and Newman [17] also considered this equation as the basis for a

theory of gravitation and suggested that it is analogous to Maxwell’s equations for

electromagnetism.  But the first real identification with Yang-Mills gauge theory was
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made by Loos-Treat [18] and Treat [19].  However, Loos and Treat did not consider it

seriously as a generalization of Einstein’s theory, but rather as a mathematical

consequence of the dynamical equivalence between the Yang-Mills and gravitational

fields.  Subsequently, Yang [15] suggested this theory and it was also considered by

Camenzind [20] and Shankar [21] (see also Ref’s [22]).  But in the subsequent literature,

the equation 0R ρ
ρ σµν∇ = , taken by itself, became known as “Yang’s gauge theory of

gravity,” or “gauge gravity” for short, although Yang was one of the last to suggest it.

But many problems surfaced in this approach.  Particularly troublesome were the

appearance of multiple nonphysical solutions and the fact that the field equations involve

higher than second derivatives of the metric.  The appearance of extraneous solutions was

considered a nuisance by Pavelle [23], Thompson [24], Ni [25], and Fairchild [26], who

cataloged several of the spherically symmetric cases and discussed their nonphysical

nature.  Hayashi [27] has considered the consequences of the theory under the assumption

of a non-metric connection and concluded that the theory must very likely be metric to be

consistent, although the field equations themselves originate by treating the metric and

connection as independent quantities.  Subsequent analysis on the linearized version of

the theory was given by Aragone and Restuccia [28] and the PPN formalism (post

parametrized Newtonian formalism [29]) was applied to the theory by Camenzind [30].

In summary, the general consensus was not in favor of a sound physical theory.

In subsequent work there were efforts to show that the gauge gravity theory might

still be viable physically by finding a constraint to eliminate the nonphysical solutions.

The possibility of finding such a constraint was initially suggested by Pavelle [31].

Thompson [32] also suggested this possibility but was more specific by hinting that the

identity, [ ] 0R R σ
ρσ µν λ = , may be helpful in eliminating all solutions that are not Einstein

spaces.  But no further analysis was given by Thompson although he did comment that

the Petrov classification of spaces might be restricted by an unspecified condition related

to this identity.  In another attempt to eliminate all solutions that are not Einstein spaces,

Fairchild [33] considered the field equations that originate by variation with respect to the

metric, 1
4 0R R g R Rρ σ λ ρ λκ σ

σµλ ρν µν σ ρλκ⋅ ⋅ ⋅− = , in addition to the gauge gravity equations,

0R ρ
ρ σµν∇ = , in an attempt to eliminate the extraneous solutions.  But this approach
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failed as a result of the fact that both sets of field equations shared a class of non-physical

solutions that are conformally flat and also have a vanishing Ricci scalar, i.e., they satisfy

Nordström’s field equations [34] (as discussed in detail in Chapter 3).  In a more recent

paper, Guilfoyle and Nolan [35] have reconsidered the identity suggested by Thompson,

[ ] 0R R σ
ρσ µν λ = , which they have relabeled as the “curvature orthogonality condition

(COC).”  But apparently, these authors have misinterpreted this condition as making a

stronger statement on the classification of spacetime solutions of the gauge gravity field

equations.  Their analysis considers the various Petrov types of spacetimes allowed by the

COC according to a Segré classification of the Ricci tensor.  But in fact this condition

says nothing more than, 0 0= , since the equation is an identity.  This detail is discussed

at greater length in Chapter 3.

Later on, some clarification with regard to the extraneous solutions was given by

Havas [36] who showed that any set of field equations involving higher than second order

derivatives of the metric must either give multiple spherically symmetric solutions or

have a bad Newtonian limit.  But even with these results, there was sufficient interest in

the theory that Baekler and Yasskin [37] considered an analysis that gives a comparison

of the spherically symmetric solutions to the field equations, 0R ρ
ρ σµν∇ = , to those of the

quadratic curvature generalization based on Poincaré invariance proposed by Heyl, et. al.

[38] (see also Ref’s [39]).  More recent work stemming from the original gauge gravity

theory has been considered in attempts to quantize the gravitational field [40] and is still

an active area of investigation even at the classical level (see [35] and the other

investigations related to the gauge gravity theory in [41]).

In parting ways with the original gauge gravity approach, it was noted by

Fairchild [42] that the analogies drawn between the Yang-Mills gauge theory and

gravitation as a gauge theory are strictly kinematic.  Therefore, in an attempt to bring

gravitation into strictly Yang-Mills form,† Fairchild has considered a Lagrangian that is

closely related to the Lagrangian considered by Leutwyler [43] in his investigation of the

generally covariant Dirac equation.  Additional analysis on the equivalence between

                                               
†
 many authors have claimed that their Lagrangians or field equations are the most analogous to the Yang-

Mills theory.  See e.g., Gronwald and Heyl [89].
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solutions of this theory and Einstein’s theory were given by Debney, Fairchild, and

Siklos [44].  They showed that the only vacuum solutions of the theory are also those of

Einstein’s.  A further investigation is given by Yasskin [45] who considers the Newtonian

limit and reports that the spatially flat Friedmann-Robertson-Walker solution of

Einstein’s theory is an exact solution of Fairchild’s theory.

Although the original goals of the quadratic curvature generalizations have not

been fully realized, the formalism that was developed from such investigations has

proven general enough to suggest alternative approaches toward quantization of the

gravitational field (although very few of these approaches are tied directly to the original

gauge gravity theory).  Indeed, there are many investigations underway toward

quantization including the superstring-theoretic approach [46], the connection dynamics

proposal [47], non-commutative geometries [48], generalized gauge-theoretic

formulations [49], quantization of topologies [50], topological geons [51], gravity as an

induced phenomenon [52], and so on (see also Burton and Mann [53] for a discussion of

the recent literature).  In each of these approaches a fundamental role has been given to

the variational procedure - particularly to the Palatini approach in which the metric and

connection are treated as independent dynamical variables.  The advantages in this

formalism were appreciated early on from the parallels made with gauge theory and

quadratic curvature attempts at unification.  As a result of the early work on quadratic

curvature generalizations, the mathematical groundwork for the Palatini procedure has

been developed and explored in considerable detail, but there are still details of the

procedure that have not been fully investigated, at least insofar as the gauge gravity field

equations are concerned.

Therefore, one goal of this thesis has been to reconsider earlier work on the gauge

gravity theory to show that an additional algebraic constraint arises by imposing

equivalence between the standard and Palatini variational procedures.  A basic result is

that this constraint gives additional insight into the classical gauge theoretic structure of

gravitation and eliminates many (but not all) of the nonphysical solutions to the gauge

gravity theory.  The basis for the analysis is given by noting that the Einstein-Hilbert

action is special in that its variation gives identical results using either the standard or

Palatini variational procedures.  However, this “symmetry” no longer applies when the
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action is taken in quadratic form.  As a result of imposing this condition onto the gauge

gravity field equations, an auxiliary algebraic condition is obtained that restricts the class

of spacetime solutions to the field equations.  This condition is shown to be similar to a

condition that was proven earlier using the Segré classification of the Ricci tensor by

Debney, Fairchild, and Siklos [44] which has been used by these authors to eliminate the

“non-Einsteinian” solutions of Fairchild’s theory [42] (as discussed above).

Background for the analysis is given in Chapters 2 and 3.  In Chapter 2, the field

equations that originate from the Einstein-Hilbert action are derived using the Palatini

variational procedure from a slightly more general viewpoint than what is usually

discussed in the literature.  The analysis considers the possibility for both non-vanishing

covariant derivative of the metric and also by assuming a non-symmetric connection, i.e.,

Schouten’s 4L .  The goal in this approach is to not only provide an introduction to the

Palatini variational procedure used in Chapter 3, but also to make as many properties as

possible follow from the variational procedure itself, while minimizing the number of

additional constraints that are imposed on the variations.  As a result, the relationship that

exists between the metric and connection is determined by the secondary set of field

equations in the Palatini variation with respect to the connection.  For the Einstein-Hilbert

action this relationship is expressed by a Lemma that is discussed in Chapter 2.  A similar

result has also been obtained by Papapetrou and Stachel [54] who have considered the

torsion as an independent variational parameter.  In the following two subsections of

Chapter 2, the Schwarzschild and Reissner-Nordström solutions are then derived as the

basis for the dynamical analysis presented in Chapters 5 and 6.

In the early sections of Chapter 3, the variational formulation of Yang-Mills

gauge theory is reviewed to motivate the gauge theory kinematics based on the Lorentz

group.  In the following subsection, the gauge gravity field equations are derived and then

the spherically symmetric solution structure of the field equations is presented in detail in

the sub-subsection entitled “Solutions.”  An additional unreported solution to the free-

field “energy momentum” equations is presented in addition to analysis on the

conformally flat solutions that are shared by Nordström’s theory [34].  Finally, the

analysis for the additional algebraic constraints is presented in the final sub-subsection of

Chapter 3.
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In Chapter 4, an evaluation of the spherically symmetric solution structure for

another attempted generalization of Einstein’s theory is presented.  The theory was

proposed long ago by Weyl [55] as a generalization based on conformal invariance but

has been more recently considered by Mannheim and Kazanas [56, 57] to explain the

rotation curves of galaxies without the need for postulating the existence of dark matter.

As a consequence of basing a theory on conformal invariance the action considered for

the theory must also be quadratic in the curvature tensors, so there are features of the

analysis that are shared by the quadratic curvature Lagrangians discussed in Chapter 3.

Therefore, the purpose of this Chapter is to emphasize this similarity and to show that a

class of conformally flat solutions to the gauge gravity field equations, namely those also

satisfying Nordström’s theory [34] are shared by conformal gravity.

Part II. Dynamics

In the second part of the thesis (Chapters 5 and 6), the orbital dynamics of point

particles in the Schwarzschild and Reissner-Nordström spacetimes are investigated using

methods from dynamical systems theory.  The motivation for considering this analysis is

to gain additional insight into the physical and analytic structure of the solutions.  It is a

fact that the underlying mathematical structure for an arbitrary set of equations is often

more clearly elucidated by applying techniques developed from the study of dynamical

systems (for instance, Marsden [58]) – particularly in those cases where a direct physical

interpretation is not always of central importance (e.g., Korteweg-deVries [59]; Hénon-

Heiles [60], etc.).  Therefore, even in dynamical systems that are considered to be well

understood, additional qualitative information or obscure details of a given solution may

sometimes be more clearly conveyed or classified by applying newer and more modern

techniques of analysis.  This is the goal in the second part of the thesis.

A great deal is known about the general relativistic orbital dynamics.  Indeed, the

earliest predictions of Einstein’s theory concerned the bending of light and the perihelion

precession of Mercury.  Motivated by these and other solar system observations - the

Schwarzschild, Reissner-Nordström, Kerr, and Kerr-Newman orbital dynamics and their

analytic structure have been analyzed extensively in the literature (e.g., Darwin [61];

Kruskal [62]; Boyer and Lindquist [63]; Graves and Brill [64]; Carter [65]; Misner,
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Thorne, and Wheeler [66]; Sharp [67], and Chandrasekhar [68]).  The most common

method of dynamical analysis has been based on perturbative techniques or numerical

integration [69].  However, exact solutions have been discussed by many authors for

circular orbits, light rays, and radial motion - see e.g., Chandrasekhar [68].  But

surprisingly, given that the general relativistic equations of motion are integrable, an

investigation of these dynamics that utilizes the phase-plane and bifurcation techniques in

combination with a linear stability analysis has not appeared widely in the literature.

However, earlier work by Szydlowski, et. al. [70] and Collins [71] considers an

application of the phase-plane method to study the stability properties of cosmological

solutions.  A similar analysis has also been discussed by Khalatnikov [72].  A more

recent phase-plane analysis of the Friedmann-Robertson-Walker cosmology in Brans-

Dicke gravity is considered in Ref. [73].  Other recent work using methods from

dynamical systems theory has been concerned with the detection and analysis of chaotic

orbits [74].  In contrast to these studies the emphasis of the analysis considered here will

be an application of the bifurcation and linear stability techniques to classify the stability

properties of the orbits - particularly to the Reissner-Nordström solution.  Specifically,

the goal in this analysis is to solve the bifurcation problem for the Reissner-Nordström

system.  That is – to present a summary of the phase-plane topological structure based on

a study of coalescing fixed points and identify the parameter values at which these

bifurcations occur.  The Schwarzschild dynamics have been analyzed with a pedagogical

emphasis using the phase-plane and bifurcation techniques in [75] (thesis Chapter 5); the

Reissner-Nordström periastron advance is considered in [76] (thesis Chapter 6).

Comparatively speaking, the Reissner-Nordström orbital dynamics have received

relatively little attention in the literature compared to the corresponding Schwarzschild,

Kerr, or Kerr-Newman dynamics.  Probably the reason for this omission is due to the

assumption that a black hole possessing a sizable charge would be rapidly neutralized by

the inflow of oppositely charged particles.  As a result, the solution has not often been

considered seriously as a base model for astrophysical processes.  But the work of

Eddington [77] has shown that stars are positively charged and that electric fields play an

essential role in stellar structure.  Furthermore, the Reissner-Nordström solution could
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have added physical relevance if primordial black holes are proven to exist,† since then it

is conceivable that a sizable charge could accumulate without neutralization by

surrounding matter.  But experimental evidence for such objects is questionable (see e.g.

Ohanian and Ruffini [78], p. 487-489).

As an application of Eddington’s model, Harrison [79] has considered order of

magnitude calculations that place an upper bound on the size of such “gravity induced”

charge and discusses the physical mechanism for its production within the stellar interior.

The mechanism is based on the relative mass difference between the proton and electron.

The reasoning is as follows: within a star, proton and electron gases contribute equally to

the total pressure gradient.  But gravity acts mainly on the relatively massive protons, and

therefore an electric field mediates between the electron and proton gases.  In effect,

electrons have velocities greatly exceeding escape velocity, and therefore some electrons

escape leaving the star positively charged with an electric field that retains the remaining

electrons.  However, from the cosmic censorship conjecture (discussed in more detail in

Chapter 2), an upper bound is placed on the charge contribution to the total mass of the

Reissner-Nordström black hole.  Therefore, at certain parameter values the dynamics may

be implausible physically, but are nevertheless dynamical consequences of the Reissner-

Nordström solution, albeit only mathematical.  The viewpoint adopted here is non-

committal on the physical existence of such solutions – the full range of parameter values

are simply explored as dynamical possibilities (Chapter 6), not necessarily physical ones.

The contents of Chapters 5 and 6 are organized as follows: in Chapter 5, the

Schwarzschild orbital dynamics are first analyzed using the phase-plane and bifurcation

techniques.  The purpose of this Chapter is to setup the analysis that will be applied to the

Reissner-Nordström dynamics in Chapter 6.  Although the Schwarzschild orbital

dynamics are well understood and have been analyzed using a variety methods in the

literature, there are still qualitatively new results that have not been reported for the

Schwarzschild dynamics.  Essentially, these results correspond to the limitations that are

placed upon the types of orbits that may exist before an unstable orbit is reached and the

kinematic classification of the separatrices as distinct unstable orbits.  In essence, the

                                               
†
 I thank H. A. Weldon for this comment.
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separatrix gives a graphic representation of the critical relationship that exists between

energy and angular momentum at the unstable orbital radius.  The separatrices

themselves are therefore classified kinematically as unstable hyperbolic, parabolic, and

elliptical orbits.  Furthermore, the Schwarzschild orbital dynamics may be interpreted and

analyzed as a conservative 2-d bifurcation phenomenon which summarizes the range of

orbits that may occur as the energy and angular momentum of the system are varied.  As

a result, the bifurcation diagram divides the dynamics into physically distinct regions in

contrast to the phase-plane that is divided into dynamically distinct regions.

In a later Section of Chapter 5, a phase-plane analysis of dynamical invariance

between the coordinate and proper time reference frames is given.  Although the

dynamical structure (i.e. the effective potential) is demonstrated to be invariant between

the two reference frames, the phase diagrams in each case are not identical.  This is due

to the existence of an additional phase-plane fixed point that appears in the coordinate

reference frame at the event horizon.  This fixed point is obviously coordinate dependent,

but must exist to explain the apparent “slowing down” of objects (and redshift of signals)

approaching the horizon boundary as seen by an observer in the coordinate reference

frame.  For comparison, the corresponding Newtonian phase-plane results are considered

in an Appendix.  Not only does this analysis complement the discussion of the

Schwarzschild dynamics considered in Chapter 5, but it is of pedagogical value to show

that an analysis of Newtonian orbits using time as an independent variable is just as

instructive and no more complicated in principle than using the equatorial angle

(however, the opposite is true when using the standard methods of analysis, e.g. [80]]).

Finally, the phase-plane analysis is applied to the kinematics of light rays in the

Schwarzschild black hole spacetime. The standard results are discussed and then

compared with the phase-plane results.  The added significance of the photon orbits in the

phase-plane context is that the equilibrium points of the differential equations exhibit a

transcritical bifurcation (i.e. an exchange in stability) at these parameter values.

As a result of the spherical symmetry of the Reissner-Nordström solution there

are many similarities shared with the corresponding Schwarzschild analysis of Chapter 5.

However, in the Reissner-Nordström case there are three fixed points compared to only

two in the Schwarzschild example.  As a result, the dynamics are considerably more
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complex since the parameter space is two dimensional compared to only one dimensional

for the Schwarzschild case. These dynamics are presented in Chapter 6 and are organized

as follows: the phase-plane equations and fixed points for the system are first derived.

The Reissner-Nordström parameter space is then presented which is an important

diagrammatic tool in the subsequent dynamical classification.  The parameter space

organizes and locates the bifurcations that are classified in the following sub-section

entitled Bifurcation Analysis.  The discussion on the stability properties of the orbits is

augmented with exact phase-diagrams that illustrate the underlying “global” phase-plane

structure of the system at selected parameter values.  In the following sub-section the

separatrix structure of the Reissner-Nordström phase diagrams is discussed as a

straightforward generalization of the Schwarzschild case.

As a consequence of the additional dynamical complexity associated with the

Reissner-Nordström system, there are multiple periodic solutions that yield orbits with

finite precession values.  An analysis and comparison of several such orbits is given in

addition to the standard precession for timelike orbits.  A linear stability phase-plane

calculation of periastron advance is presented in the sub-section entitled Periastron

Precession and then extended to (a) precession about a bifurcation point of the dynamics

and (b) precession about a secondary center node fixed point that exists as a consequence

of the black hole charge.  The bifurcation point considered in (a) has not been reported in

the literature and is given by parameter values that would presumably correspond to

timelike orbits about a naked singularity, although it is not expected that any physical

interpretation can be given for these cases.  The “acausal” geodesics discussed by

Brigman [81] are identified with (b), which is a center node fixed point positioned

between the outer horizon, r+ ,  and the interior horizon, r− .  Finally, the photon orbits

give a special case of the dynamics as a transcritical bifurcation point (as in the

Schwarzschild case) and are presented in the final sub-section entitled Light Rays.
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Chapter  2   Field Equations and Variational Formalism

Einstein-Hilbert

The goal in the first section of this Chapter is to not only provide background for

the Palatini procedure used in Chapter 3, but to make as many properties as possible

follow from the variational procedure, while minimizing the number of additional

constraints that are imposed on the variations themselves.  Therefore, we consider the

field equations that result from a variational procedure applied to the Einstein-Hilbert

action in which the connection is neither metric or symmetric, and no functional relation

is assumed to exist between the metric and connection.

The fact that the spacetime manifold is defined with a connection that has no

assumed symmetries gives the 4L  geometric manifold discussed by Schouten.  But the

addition of a symmetric metric tensor, gµν , is necessary to define inner products between

vector and tensor quantities as well as defining the length element (the addition of the

metric into the 4L  is discussed by Heyl [82], i.e., the 4( , )L g ).†  Similar field equations

have been considered by Papapetrou and Stachel [54] and Burton and Mann [54] who

have assumed a symmetric connection and include all terms in the action that are at most

quadratic in derivatives and/or connection variables.  But here a simpler case is

considered but with the added generality of a non-symmetric connection to explore the

relationship that exists between the metric and connection, particularly in a spacetime

originating from the Einstein-Hilbert action.  In the Palatini style variation this

relationship is determined by the secondary field equations that are obtained by variation

with respect to the connection.  A simpler calculation that is related to this approach was

considered previously by Stephenson [10] for the case that the connection is symmetric

and is discussed in greater detail in Chapter 3.

There are essentially two variational methods that may be used to calculate the

field equations of general relativity.  In the first (labeled as the “standard” variational

                                               
†
 I thank Richard Treat for this clarifying comment on the 4( , )L g .
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procedure) the metric is the sole variational parameter of the theory and is implied by the

condition that the connection be metric† (Schouten [83], p. 132):

0gρ µν∇ = . (2.1)

The solution to (2.1) is given by the Christoffel form:

1
2 ( )

o

g g g gσ σ λ
µν µ λν ν λµ λ µν∂ ∂ ∂Γ ≡ + − , (2.2)

when the connection is symmetric (i.e., [ ] 0ρ
µνΓ = ), and is derived as follows - expand the

covariant derivative in (2.1) and then cyclically permute indices to obtain the linear

combination:

0

.

g g g g g g

g g g g g g

λ λ
ρ µν µ νρ ν ρµ ρ µν µρ λν νρ µλ

λ λ λ λ
µ νρ νµ λρ ρµ νλ ν ρµ ρν λµ µν ρλ

∂

∂ ∂

∇ + ∇ − ∇ = = − Γ − Γ

+ − Γ − Γ − + Γ + Γ
(2.3)

Rewriting this result gives

( )2 g g g g T g T gλ λ λ
µρ λν ρ µν µ νρ ν ρµ µν ρλ ρν λµ∂ ∂ ∂Γ = + − + + , (2.4)

where the torsion tensor is defined: ‡

[ ]2T λ λ λ λ
µν µν µν νµ= Γ = Γ − Γ . (2.5)

If the connection is symmetric then (2.4) simplifies to the Christoffel form (2.2).

As a result of (2.2), the corresponding Einstein free-field equations are obtained

from / 0EHS g µνδ δ = , using the standard variational procedure (Appendix A):

1
2 0 0 ; , ,etc. 0,1,2,3R g R Rµν µν µν µ ν− = ⇒ = = , (2.6)

where EHS  is the Einstein-Hilbert action (the constant factor is required for Newtonian

correspondence which is discussed in the next section; G is Newton’s gravitational

constant, c is the speed of light):

1 1
2 24 4

4 4

1 1
[ ]

16 16EHS g d q g g R d q g R
Gc Gc

ρσ
ρσπ π− −= =∫ ∫ . (2.7)

                                               
†
 in the literature there are widely varying labels attached to the condition that 0gρ µν∇ = ; e.g., metricity,

Riemann condition, metric compatibility, Einstein-Hilbert constraint, etc., but we shall adopt the
conventions and terminology of Schouten – that the connection is metric with respect to gµν .
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In (2.7), q denote generalized coordinates, gµν  is the metric, detg gµν≡ − , and Rρσ  is

the Ricci tensor:

R R ρ ρ ρ ρ λ ρ λ
σν σρν ρ σν ν σρ λρ σν λν σρ∂ ∂≡ = Γ − Γ + Γ Γ − Γ Γ , (2.8)

which is a derived quantity from the transvection† (see Schouten [83], p. 8 and 14) of the

Riemann curvature tensor:

R ρ ρ ρ ρ λ ρ λ
σµν µ σν ν σµ λµ σν λν σµ∂ ∂= Γ − Γ + Γ Γ − Γ Γ , (2.9)

[note: the signature adopted here is ( 1, 1, 1, 1)diag µνη = + − − − ].

The second variational procedure is given by the Palatini approach which assumes

no a-priori relationship between the metric and connection.  As a result, a more subtle

role is played in the Palatini variation – for in addition to the field equations (2.6)

obtained by variation with respect to gµνδ , the variation with respect to ρ
µνδ Γ  yields the

metric condition (2.1) as a field equation extremizing the Einstein-Hilbert action.  It is

interesting to note that Einstein [84] was apparently the first to have treated the

connection and metric as independent variational parameters and that Palatini never

actually used this procedure (see Heyl, et. al [85] and Ref. [84]).

The fact that this seemingly independent approach confirms that the connection is

metric has been viewed by many as a kind of “proof” of the validity of the Einstein-

Hilbert action as a starting point for the correct theory of gravitation.  But the Palatini

procedure also suggests a natural starting point for generalizations of Einstein’s theory by

relaxing the constraint (2.1).  In fact, it has been noted long ago by Schrödinger [86] and

more recently by Hehl [87] that in a generalized theory of gravitation one expects (2.2) to

be modified in some manner that is typically not obvious.  Indeed, the Palatini approach

provides the starting point for most generalized (quantum) theories of gravity mentioned

in the Introduction and has also been considered in other classical generalizations based

                                                                                                                                           
‡
 Note: the conventions and notation used here will generally follow Schouten but differ in at least two

respects, namely, the torsion tensor (2.5) differs by a factor of two, and the index ordering placed on the
kernel symbol, R, of Riemann tensor (in (2.9)) is modified, i.e., Schouten uses R ρ

µνσ  to denote (2.9).
†
 a technical point: transvection is the operation of multiplying by a Kronecker delta, ρ

σδ , and has the

operator form of an upper and lower index – in contradistinction to contraction - which involves the raising

or lowering of an index using a metric, gρσ .
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on the spin connection and local automorphism invariance (see Crawford [88]) and the

“gauge gravity” theory that is considered in Chapter 3.

Probably the most obvious attempt to generalize Einstein’s theory based on a

modification of (2.2) is to allow the connection to have a non-symmetric or torsion

contribution.  Although the theories stemming from this approach are not considered in

this thesis, it is still worthwhile to make a few comments on these cases given that

nonzero torsion will be utilized for calculational purposes in this Chapter and in Chapter

3.  For example, torsion plays an essential role in Poincaré gravity which is the

generalization based on the Poincaré group suggested by Hehl, et. al (e.g., [49, 82, 89];

otherwise known as the Einstein-Cartan 4U  theory).  The physical motivation is given by

noting that in general relativity the source of the gravitational field is mass, causing the

curvature of spacetime, but no obvious geometric role has been given to spin.

Furthermore, it has been demonstrated (see Heyl [82] and also Crawford [90]) that the

spin angular momentum of a system determines the torsion of the space when spinor

matter is present.  Therefore, it is appealing to consider spaces with both curvature and

torsion as a framework for constructing gravitational theories at the microscopic level.

Macroscopically, these theories would presumably give back the usual version of general

relativity since mass (being of monopole character) “adds up,” while spin (being of

dipole character) averages out in the large.  In essence, this picture forms the basis of the

view presented by Hehl et. al. [82].

Continuing with the variational calculation - the results may be summarized as

follows: variation with respect to gµνδ  produces field equations that require the

symmetric contribution to the Ricci tensor to vanish.  But no constraint is placed on the

antisymmetric part which may be expressed using Bianchi’s second identity (Schouten

[83], p. 150; see also Crawford [90]):

.

R R R T T T

T T T T T T

ρ ρ ρ ρ ρ ρ
σµν µνσ νσµ σ µν µ νσ ν σµ

ρ κ ρ κ ρ κ
κσ µν κµ νσ κϖ σµ⋅

+ + ≡ ∇ + ∇ + ∇

− − −
(2.10)

Thus, the transvection of σ ρ→  gives (let T T ρ
α ρα≡ ):

R R T T T T Tρ ρ
µν νµ µ ν ν µ ρ µν ρ µν− = ∇ − ∇ − ∇ + . (2.11)
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But the second set of field equations obtained from the variation, ρ
µνδ Γ , of the Einstein-

Hilbert action imposes a relationship between the metric and connection – namely, that

(2.1) is valid if and only if the connection is symmetric.  The calculation is presented in

detail below.

First consider the variation of (2.7) with respect to gµνδ :

1/ 2
4 4 1/ 2[ , ]

0
( ) ( ) ( )

EHS g g g
d q g R d q g R

g q g q g q

ρσ
ρσ

ρσ ρσµν µν µν
δ δ δ
δ δ δΓ

Γ = = +
′ ′ ′∫ ∫ . (2.12)

Using the variational results (see also Crawford [90]):

( )
1/ 2

4 4 1/ 21 1
2 2

( ) ( )
( ); ( ) /

( ) ( )

g q g q
g q q q q g

g q g q

ρσ
ρ σ ρ σ

µν µ ν ν µµν µν
δ δδ δ δ δ δ δ
δ δ

′ ′= − − = + −
′ ′

, (2.13)

(2.12) becomes:

( )4 1/ 2 4 1/ 21
2

4 41
2

[ , ]
( ) /

( )

( ) .

EHS g
d q g q q g R

g q

d q g q q g R

ρ σ ρ σ
µ ν ν µ ρσµν

ρσ
µν ρσ

δ δ δ δ δ δ
δ

δ
Γ

Γ ′= + −
′

′− −

∫

∫
(2.14)

Integrating (2.14) and then simplifying algebraically gives the field equations:

1
( ) 2 0R g Rµν µν− = , (2.15)

noting that Rµν  is not symmetric when torsion is present as noted above in (2.11).

Therefore, the field equations resulting by variation with respect to gµνδ  require that the

symmetric part of the Ricci tensor vanish:

( )

[ , ]
: 0EHS g

R
g µνµν

δ
δ Γ

Γ = , (2.16)

which is expected by variation with respect to a symmetric tensor, g µνδ .  From (2.11) it

is obvious that the free-field Einstein equations (2.6) are obtained as a special case of

(2.16) when the torsion vanishes.

The secondary field equations are obtained by variation with respect to ρ
µνδ Γ :

4 1/ 2[ , ]
0

( ) ( )
EH

g

RS g
d q g g

q q
ρσρσ

α α
µν µν

δδ
δ δ

Γ = =
′ ′Γ Γ∫ , (2.17)
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and then expanding the variation of Rρσ  using the definition of the Ricci tensor from

(2.8) gives:

( )

1/ 2 1/ 2 1/ 2

1/ 2 .

g

R
g g g g g g

g g

λ λ
ρσ ρσ ρλρσ ρσ ρσ

λ σα α α
µν µν µν

λ ω λ ω ρσ
ωλ ρσ ωσ ρλα

µν

δ δ δ
∂ ∂

δ δ δ

δ
δ

   Γ Γ
= −      Γ Γ Γ   

+ Γ Γ − Γ Γ
Γ

(2.18)

The variational terms in (2.18) may be expressed:

( )

( )

1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 ,

g g g g g g

g g g g g g

λ λ λ
ρσ ρσ ρσρσ ρσ ρσ

λ λ λα α α
µν µν µν

λ λ λ
ρλ ρλ ρλρσ ρσ ρσ

σ σ σα α α
µν µν µν

δ δ δ
∂ ∂ ∂

δ δ δ

δ δ δ
∂ ∂ ∂

δ δ δ

   Γ Γ Γ
= −      Γ Γ Γ   

   Γ Γ Γ
= −      Γ Γ Γ   

(2.19)

noting that the first terms on the RHS in each case are boundary terms and will be

assumed to vanish.  Substituting (2.19) into (2.18) and then expanding out the other

variations gives the result:

( ) ( )1/ 2 1/ 2 1/ 2

1/ 2 .

g

R
g g g g g g

g g

λ λ
ρσ ρσ ρλρσ ρσ ρσ

λ σα α α
µν µν µν

ω ωλ λ
ρσ ρλω λ ω λ ρσωλ ωσ

ρσ ωλ ρλ ωσα α α α
µν µν µν µν

δ δ δ
∂ ∂

δ δ δ

δ δδ δ
δ δ δ δ

Γ Γ
= − +

Γ Γ Γ

 Γ ΓΓ Γ+ Γ + Γ − Γ − Γ  Γ Γ Γ Γ 

(2.20)

Note that no symmetries have been assumed on the ρ
µνΓ , therefore

4

1/ 2

( ) ( )

( )

q q q

q g

λ
ρσ λ µ ν

α ρ σα
µν

δ δδ δ δ
δ

Γ ′−=
′Γ

. (2.21)

Substituting this result back into (2.20) then gives:

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

4
1/ 2 1/ 2

1/ 2

1

2

( )
( )

( )

( )
[ ( ) ] .

t

t

R q
g g g g g g g g g g

q

q q
g g g g

g

ρσ ρσ µν µ ρν ν µρ λ µν
α ρα αρ αλα

µν

ν µσ µ ρσ
α σ ρσ

δ
∂

δ

δδ ∂


= − − Γ − Γ + Γ′Γ



′−+ + Γ 



1444444444442444444444443

1444442444443

(2.22)

The structure of (2.22) is further clarified by rewriting 1t  and 2t  in terms of

covariant derivatives.  Beginning with the first term of 1t , note that
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1/ 2 1/ 2 1/ 2( ) ( )g g g g g gµν µν µν
α α α∇ = ∇ + ∇ , (2.23)

but to expand (2.23) further, an intermediate calculation of the covariant derivative of the

tensor density 1/ 2g  is required (tensor densities are discussed in Schouten [83], p. 12).

To obtain these results, consider the covariant derivative of a tensor density, Π , defined

by (in 4 dimensions):

µνρσ
µνρσεΠ = Π , (2.24)

where µνρσε  is the totally antisymmetric tensor density of weight +1 and µνρσΠ  is also

totally antisymmetric.  The covariant derivative is thus calculated:

( )µ ωνρσ ν µωρσ ρ µνωσ σ µνρω
λ λ ωλ ωλ ωλ ωλ µνρσε∇ Π = ∂ Π + Γ Π + Γ Π + Γ Π + Γ Π . (2.25)

But notice from (2.24) that:

1
24

µνρσ µνρσεΠ = − Π , (2.26)

which gives

1
4 ( )µ ω ν ω ρ ω σ ω

λ λ ωλ µ ωλ ν ωλ ρ ωλ σδ δ δ δ∇ Π = ∂ Π + Γ + Γ + Γ + Γ . (2.27)

Finally, (2.27) simplifies to

µ
λ λ µλ∇ Π = ∂ Π + Γ Π , (2.28)

or similarly, for a tensor density of weight –1:

µ
λ λ µλ∇ Π = ∂ Π − Γ Π . (2.29)

As an application of these results the covariant derivative of 1/ 2g is thus obtained:

1/ 2 1/ 2 1/ 2g g g λ
α α λα∇ = ∂ − Γ . (2.30)

Expanding the covariant derivatives on (2.23) and solving for the term, 1/ 2( )g g µν
α∂

gives finally

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2( ) ( )g g g g g g g g g gµν µν ρ µν µ ρν ν µρ
α α ρα ρα ρα∂ = ∇ + Γ − Γ − Γ . (2.31)

As a result, 1t  may be expressed:

1/ 2 1/ 2 1/ 2 1/ 2
1

1/ 2 1/ 2 1/ 2

( )

.

t g g g g g g g g

g g g g g g

µν ρ µν µ ρν ν µρ
α ρα ρα ρα

µ ρν ν µρ λ µν
ρα αρ αλ

= − ∇ − Γ + Γ − Γ

− Γ − Γ + Γ
(2.32)

The third and fifth terms cancel leaving two torsion terms and a covariant derivative:

1/ 2 1/ 2 1/ 2
1 [ ( ) ]t g g g g T g T gµν ν µρ µν

α ρα α= − ∇ − + . (2.33)
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Similarly, the 2t  term may be expressed:

1/ 2 1/ 2
2 ( ) /t g g g T gµσ µσ

σ σ= ∇ + . (2.34)

Combining 1t  and 2t  with (2.22) and performing the integration, the final field equations

are obtained:

1/ 2 1/ 2

1/ 2 1/ 2

[ , ]
: 0 ( ) /

( ) / .

EH

g

S g
g g g T g

g g g T g T g

ν µσ µρ
α σ ρα

µν

µν ν µσ µν
α ασ α

δ δ
δ

Γ  = ∇ + Γ

 − ∇ + + 

(2.35)

Considering various contractions of (2.35), in general it does not appear that that either 1t

or 2t  will vanish independently of the other (unless the torsion is zero as discussed

below).  Therefore, it is not sufficient to consider the vanishing of either term separately.

The field equations (2.35) determine the geometry of the Einstein-Hilbert

spacetime when the connection is neither metric or symmetric – in the same sense that

( )
o

gσ σ
µν µνΓ = Γ  determines the geometry of the space when 0gρ µν∇ =  is satisfied.  As a

result, (2.35) gives an implied relation between the metric and connection (or as

expressed in (2.35) – between the metric and the torsion tensor).  As a consequence of

this relationship the following Lemma holds in a spacetime originating from the Einstein-

Hilbert action:

0 0g Tµν ν
κ κλ∇ = ⇔ = . (2.36)

The Lemma is proven by first assuming that (2.1) holds.  In this case (2.35) reduces to

( )0 T T g T gν ν µσ µν
κ σ κσ κδ= − − , (2.37)

and then solving for the torsion tensor gives the result:

T T Tν ν ν
κλ κ λ λ κδ δ= − . (2.38)

Transvecting (2.38) shows that the torsion trace vanishes:

0Tλ = , (2.39)

and therefore, in turn the torsion must vanish from (2.38).  The ⇐  case is proven by first

expanding the covariant derivatives in (2.35) using (2.30).  The result simplifies to
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1/ 2 1/ 2

1/ 2 1/ 2

0 ( / )

( / ) ,

g g g g

g T g g g g

ν µσ λ µρ
α σ σ σλ

µν ν µσ λ µν
α ασ α α λ

δ  = ∇ + ∂ − Γ 
 − ∇ + + ∂ − Γ 

(2.40)

But as noted earlier below (2.35), neither term of (2.40) can be assumed to vanish

independently of the other.  However, if the torsion vanishes:

1/ 2 1/ 2

1/ 2 1/ 2

0 ( / )

( / ) ,

g g g g

g g g g

ν µσ λ µσ
α σ σ σλ

µν λ µν
α α α λ

δ  = ∇ + ∂ − Γ 
 − ∇ + ∂ − Γ 

(2.41)

then the first term is a contraction of the second and therefore it is sufficient to consider

only the second term:

1/ 2 1/ 2( / ) 0g g g gµν λ µν
α α λα∇ + ∂ − Γ = . (2.42)

By inspection of (2.42) it is obvious that 0g µν
α∇ =  implies that 1/ 2 1/ 2/g g λ

α αλ∂ = Γ

must be satisfied.  But it is left to prove that 1/ 2 1/ 2/g g λ
α αλ∂ = Γ  ⇒  0g µν

α∇ = .  If so,

this is equivalent to the statement that 0 0T gν µν
ασ α= ⇒ ∇ = .  First expand the covariant

derivative in (2.42) to obtain:

1/ 2 1/ 2/ 0g g g g g g gµν µ βν ν µβ µν µν λ
α βα βα α αλ∂ + Γ + Γ + ∂ − Γ = , (2.43)

and then multiplying both sides by gµν  gives the result:

1/ 2 1/ 24 / 2 0g g g gµν λ
µν α α λα∂ + ∂ − Γ = . (2.44)

Next expand the partial derivative, 1/ 2gα∂ , using the identity

1/ 2 1/ 2 1/ 21 1
2 2g g g g g g gρσ ρσ

α α ρσ ρσ α∂ = ∂ = − ∂ , (2.45)

which is obtained by differentiating the identity:

det exp[ (ln )]M tr M= , (2.46)

which is true for an arbitrary (non-singular) matrix M.  Substituting (2.45) into (2.44)

then gives

1
2 g gλ ρσ

λα ρσ αΓ = − ∂ , (2.47)

and therefore (2.42) simplifies to

0g µν
α∇ = , (2.48)

and completes the proof of the Lemma (2.36).
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It is important to emphasize that neither side of (2.36) is obtained independently

of the other.  But if the ⇒  case is assumed then as a consequence (albeit trivial) the

antisymmetric contribution to the Ricci tensor must vanish as seen from the second

contracted Bianchi identity (2.11).

Derivation of the Schwarzschild Solution

The unique static spherically symmetric solution to Einstein’s field equations

describing the exterior gravitational field of a spherically symmetric distribution of

matter was found by Schwarzschild [91].  The term static implies that the metric is both

explicitly time independent (stationary) and invariant under t t→ − .  The relativistic

effects associated with a spinning distribution of matter (Kerr solution) are entirely

negligible insofar as the classic solar system experimental tests are concerned.† As a

result, the Schwarzschild solution has been the most important for testing the predictions

of general relativity.  The stability properties of the associated orbital dynamics are

considered in detail in Chapter 5.

A derivation of the solution is obtained by assuming a spherically symmetric

metric of the form:

2 2 2 2 2 2

2 2 2 2

( ) ( )

sin .

nds g dq dq c A r dt B r dr r d

d d d

µ
µν

θ θ ϕ

= = − − Ω

Ω = +
(2.49)

As discussed by many authors (e.g., Weinberg [92], pp. 176-179; Ohanian and Ruffini

[78], pp. 391-396) the metric (2.49) is the most general starting form since cross terms

involving dt dr⋅  and scale factors preceding the 2dΩ  term may be eliminated by suitable

transformations of the time and radial coordinates.  For the analysis considered here the

“standard” form (see Weinberg, p. 177) shall be adopted but it is worth noting that the

metric may also be expressed in isotropic form:

2 2 2 2 2 2( ) ( )( )ds c A r dt H r dr r d= − + Ω , (2.50)

by a suitable re-definition of r.  The Christoffel symbols are thus calculated from (2.49)

using the Christoffel formula (equation (2.2)):

                                               
†
 however, there are proposed experiments to measure the frame dragging effects of a spinning distribution

of matter (gravity probe B).
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0 0
10 01

1 1 1 1 2
00 11 22 33

2 2 3 3 2 3
12 21 13 31 33 32

/ 2

/ 2 ; / 2 ; / 2 ; sin /

1/ ; cos sin ; cot ,

A A

A B B B r B r B

r

θ
θ θ θ

′Γ = Γ =
′ ′Γ = Γ = Γ = − Γ =

Γ = Γ = Γ = Γ = Γ = − Γ =

(2.51)

and the free-field equations (2.6) become (Appendix A):

2 2

2 2

2

2

[(2 ) ] / 4 / 0

[(2 ) ] / 4 / 0

( ) / 2 ( 1) / 0

sin .

tt

rr

R A A A B A B A A B A rB

R A A A B A B A A B B rB

R AB B A r AB B B

R R

θθ

ϕϕ θθθ

′′ ′ ′ ′ ′= − − − + =
′′ ′ ′ ′ ′= + − − + =

′ ′= − + − =

=

(2.52)

For later reference, the Ricci scalar, R g Rρσ
ρσ= , is also calculated:

2 2

1 2 2

[( ) [2( ) / ] /

2(1 ) ] / 2( ) ,

R ABA AA B BA A B B A AB r

B r AB−

′′ ′ ′ ′ ′ ′= − − + −
− −

(2.53)

which must vanish by contraction of (2.6).

The derivation of the Schwarzschild solution to equations (2.52) has been widely

discussed in the literature (e.g., Ref’s [93]) using a variety of methods.  But probably the

simplest procedure is to note the algebraic similarity of ttR  and rrR .  Dividing these

respective components of (2.52) by A and B and then adding together gives the following

result

2 0tt rrR R A B B A

A B r A B

′ ′ ++ = = 
 

, (2.54)

and therefore the following relationship must hold between A and B:

ln ln . .
0 A B const const

A B B A e e A
B

− +′ ′+ = ⇒ = ⇒ = . (2.55)

The constant is determined from the Minkowski limit as r → ∞  in which case,

1A B= = , giving

1A B −= . (2.56)

As a consequence of (2.56) the volume element of 4-space is well defined regardless of

what coordinate singularities might exist for either A or B.

Using (2.56) the field equations (2.52) simplify to (primes denote derivatives with

respect to r):



23

2

(1 ) 0
2
1

(1 ) 0
2
1 0

sin .

tt

rr

A d
R A rA

r dr
d

R A rA
rA dr

R A rA

R R

θθ

ϕϕ θθθ

′= − − − =

′= − − =

′= − − =

=

(2.57)

Therefore, the field equations (2.57) imply that the following differential equation must

be satisfied:

1 0rA A′ + − = , (2.58)

which has the solution:

1( ) 1 /A r c r= − , (2.59)

where 1c  is an integration constant.  Note also that the Ricci scalar simplifies in this case

to

2 2 2 2

2 2

4 2 2 ( ) / 2r A rA A d r A dr
R

r r

′′ ′+ + − −= = , (2.60)

and therefore the vanishing of the Ricci scalar leads to a more general solution which

gives (2.59) as a special case when 2 0c = :

2
1

2
1 2

0 ( ) / 2

1 / / .

R d r A dr r c

A c r c r

= ⇒ = −

⇒ = − +
(2.61)

As illustrated in the next section the constant 2c  is due to a nonzero stress energy tensor

and therefore (2.61) does not correspond to a vacuum solution of the field equations.

Furthermore, it is worth noting that the differential equation resulting from the vanishing

of the Ricci scalar is more general than simply (2.60). As a result there are other

spherically symmetric solutions to 0R =  besides (2.61). In fact, Littlewood [94] has

proposed a theory based on this condition which was later shown by Pirani [95] to have a

nonphysical solution.  These details are considered further in Chapter 3.

The Schwarzschild solution is thus given by:

2 2 2 1 2 2 2

2 2 2 21 / ; sin ,s

ds c dt dr r d

r r d d dθ θ ϕ

−= Λ − Λ − Ω
Λ = − Ω = +

(2.62)

and the integration constant is determined from Newtonian correspondence which is

discussed below and in Chapter 5:
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r MG cs = 2 2/ , (2.63)

where sr  defines the Schwarzschild radius.  The Newtonian limit for a general spherically

symmetric metric may be obtained in two ways – in the first by considering the geodesic

motion of point mass, 0m .  The second method considers the correspondence with

Poisson’s equation for the gravitational field.  In summary, the former limit gives the

value of the Schwarzschild radius as well as the interpretation of the total energy for the

system (discussed in Chapter 5).  In addition, the limiting form of 00g  is obtained from

this method which is discussed below.  The second limit provides the coefficient of

416 Gcπ −  preceding the Einstein-Hilbert action (presented earlier in the previous section),

but this derivation is not considered here (see for instance, Anderson [96]).

To consider the first limit note that the Euler-Lagrange equations of motion may

be expressed in either of two forms - in the standard Lagrangian form (dots denote

differentiation with respect to the proper time τ ):

d

d

L

q

L

qτ
∂
∂

∂
∂µ µ

&

− = 0 , (2.64)

or in “geodesic” form

0q q qλ λ µ ν
µν+ Γ =&& & & . (2.65)

Equation (2.64) is an alternative expression of (2.65) since the relativistic Lagrangian

consists only of a “kinetic” term (i.e., 1
2L g q qµ ν

µν= & & ).  As a result, the connection

coefficients, Γµν
σ , are defined in terms of the gravitational field (the “metric”) according

to the Christoffel form, 1
2 ( )

o

g g g gσ σ λ
µν µ λν ν λµ λ µν∂ ∂ ∂Γ ≡ + − .  Expanding the summation

on the second term in (2.65) gives (the Latin indices, i, j denote spatial coordinates):

0 2 0 2
00 0 00( ) 2 ( )i i

iq q q q q qλ µ ν λ λ λ
µνΓ = Γ + Γ + Γ& & & & & & , (2.66)

but in the Newtonian limit it is assumed that iq c<<& , and therefore,

0 2 2 2
00 00( ) ( )q q q c tλ µ ν λ λ

µνΓ ≈ Γ = Γ &

& & & . (2.67)

The 00
λΓ  coefficient is calculated using the Christoffel formula:

1 1
00 0 00 002 2(2 )g g g g gλ λρ λρ

ρ ρ ρ0Γ = ∂ − ∂ = − ∂ , (2.68)
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where the first term is zero since the metric is assumed static.  Separating the spatial and

time components gives

01 1 1
00 0 00 00 002 2 2

i i
i ig g g g g gλ λ λ λΓ = − ∂ − ∂ = − ∂ , (2.69)

and then assuming the metric is diagonal - from (2.69) a further result is that

0 0
00 0igΓ ∝ = , (2.70)

and therefore

2 0 2 2 2 2/ ( / ) 0 / . 1d q d c d t d dt d constτ τ τ= = ⇒ = = . (2.71)

The constant is obtained from the Minkowski line element when v c<< .  As a result the

q qλ µ ν
µνΓ & &  term is expressed finally:

0 2 2 21
00 00 002( )i i i j

jq q q c c g gλ µ ν
µνΓ → Γ = Γ = − ∂& & & , (2.72)

and then combining with (2.65) gives the equation of motion for the point mass, 0m :

21
0 0 002

i i j
jm q m c g g= ∂&& . (2.73)

In the Newtonian limit it is reasonable to assume that the metric differs by some small

deviation, hµν , from the Minkowski line element:

 g hµν µν µνη= + , (2.74)

and therefore to first order in 00h  (noting that i j i jη δ= − ):

21
0 0 002

i i j
jm q m c hδ= − ∂&& , (2.75)

or in coordinate free notation:

21
0 0 002m q m c h= − ∇

rr
&& . (2.76)

The corresponding Newtonian equation of motion for a particle in a gravitational field is

given by

0
0

GM m
m q

r

 
= − ∇Φ = −∇ 

 

r rr
&& , (2.77)

and therefore the following correspondence is made:

00 2
0

2
h

m c

Φ= . (2.78)

As a result, the “00” component of the metric is expressed
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00 2
0

2
1g

m c

Φ≈ + . (2.79)

Comparing (2.79) with the Schwarzschild line element (2.62) shows that for proper

Newtonian correspondence:

00 2 2
0

2 2
1 1s

s

r MG
g r

r m c c

Φ= − ≈ + ⇒ = , (2.80)

 (note: rs ≈ 1 cm for the Earth; 3sr km≈  for the Sun; 3sr meters≈  for Jupiter).

Derivation of the Reissner-Nordström Solution

The static spherically symmetric solution to Einstein’s field equations describing

the exterior gravitational field of a spherically symmetric charged distribution of matter

was found in 1916 by Reissner [97] and independently in 1918 by Nordström [98].  The

Schwarzschild solution is a vacuum solution of Einstein’s field equations, but in the

Reissner-Nordström case the event geometry is coupled to the stress energy tensor of the

electromagnetic field.  The total action is thus defined (EH ≡  Einstein-Hilbert; EM ≡

electromagnetic):

[ ]total EH EM FieldS g S S= + , (2.81)

and therefore the most general form of the Einstein field equations couple matter fields to

the event geometry through the stress energy tensor of the source.  The stress energy

tensor is defined as the symmetric tensor:

1
2[ ] /EMS g g µν

µνδ δ = − Θ , (2.82)

and as result, the Einstein field equations including sources are given by (on the RHS G

is Newton’s gravitational constant):

41
2 8G R g R G cµν µν µν µνπ −≡ − = Θ , (2.83)

where Gµν  is the Einstein tensor and the proportionality constant on the RHS of (2.83)

gives the proper Newtonian limit with Poisson’s equation.  But since an electromagnetic

field is present Maxwell’s equations must also be satisfied, and therefore, the field

equations are given by the coupled Einstein-Maxwell system:
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48

0 .

G G c

F

µν µν

µν
µ

π −= Θ

= ∇
(2.84)

First consider the 48G G cµν µνπ −= Θ  equations.  The stress-energy tensor for the

electromagnetic field is derived from the EMS  action using (2.82) and the variational

results, (2.13), presented earlier in the first section of this Chapter.  The result of this

calculation is given by (k is determined by the system of units - see equation (2.95)):

1
4

1
( )

4
F F g F F

k
λ ρσ

µν µ νλ µν ρσπ
Θ = + , (2.85)

where

4 1/ 21
[ ]

16EMS g d q g F F
k

ρσ
ρσπ

= − ∫ . (2.86)

The electromagnetic field is assumed to be static and spherically symmetric.  As a result,

the only nonzero components of the field strength tensor are in the radial direction:

0 ( ) 0 0

( ) 0 0 0

0 0 0 0

0 0 0 0

E r

E r
Fµν

 
 − =
 
 
 

, (2.87)

where ( )E r  is the electric field.  Raising and lowering indices on the field strength tensor

using the metric – the stress energy tensor (2.85) has the components:

2

2

2 2

2 2 2

/ 0 0 0

0 / 0 01

8 0 0 / 0

0 0 0 sin /

E B

E A

k r E AB

r E AB

µν π
θ

 
 − Θ =
 
   

, (2.88)

which is traceless.  As a result, from (2.83) the solution will have a vanishing Ricci scalar

and therefore (2.84) is replaced by the simpler system of equations:

48

0 .

R G c

F

µν µν

µν
µ

π −= Θ

= ∇
(2.89)

The first set of equations in (2.84) are obtained by combining (2.52) and (2.88):
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2 2 2 4

00

2 2 2 4

11

2 2 2 4

22

[(2 ) ] / 4 / /

[(2 ) ]/ 4 / /

( ) / 2 ( 1) / / ,

A A A B A B A AB A rB GE kc B

A A A B A B A A B B rB GE kc A

AB BA r AB B B GE r kc AB

′′ ′ ′ ′ ′− − − + =

′′ ′ ′ ′ ′+ − − + = −

′ ′− + − =

1444444444442444444444443

1444444444442444444444443

14444444444244444444443

(2.90)

and only the first three components are independent since the “33” component is “22”

2sin θ× .  From (2.90) add and subtract the following linear combination to obtain:

("00"/ ( ) "11"/ ( )) 0A r B r A B B A′ ′+ ⇒ + = , (2.91)

and therefore 1A B −=  as in the Schwarzschild case.  Now consider the second field

equation of (2.84):

11 4
( )

2

0 0

0

0

A B
E E AB

A B r

F µν
µ

− ′ ′   ′− + + +      
 ∇ = =
 
 
  

, (2.92)

and after substituting the result, 1B A−= ,  the equation simplifies to

2 / 0E E r′ + = . (2.93)

The solution for ( )E r  is thus given by

3

2( )
c

E r
r

= , (2.94)

where 3c  is an integration constant corresponding to the charge of the system.  In

arbitrary units the electric field is given by

1/ 2

1/ 2 2

( )E r k e

k r
= . (2.95)

where the constant k is determined by the system of units (in Gaussian and electrostatic

units k = 1; in MKS units 1
0(4 )k πε −= ; see Jackson [99] or Wangsness [100] for

additional discussion on unit conventions). Using this result in combination with 1B A−= ,

the field equations (2.90) simplify to
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2 4 2 2 4 2
4 2

00 11

2 4 2

22

1
( / 1) 0 ; ( / 1) 0

( / 1) 0 .
2

A
rA A Gke c r rA A Gke c r

r Ar

r d
rA A Gke c r

dr

′ ′+ + − = + + − =

′ + + − =

144444424444443 144444424444443

144444424444443

(2.96)

By inspection the differential equation that must be satisfied is given by an

inhomogeneous version of (2.58):

2 4 21 /rA A Gke c r′ + − = . (2.97)

The solution to (2.97) is thus given by

2 4 2
1( ) 1 / /A r c r Gke c r= − + , (2.98)

where 1c  is an integration constant which must reduce to (2.63) in the limit as 0e → .

For later reference it will be useful to express the Reissner-Nordström solution in the

form (let A → Λ ):

2 2 1 2 2 2

2

2 2 2 2

1 / 2

sin ,

ds dt dr r d

x x

d d d

λ
θ θ ϕ

−= Λ − Λ − Ω

Λ = − +
Ω = +

(2.99)

by defining the dimensionless variable, /sx r r= , and the dimensionless parameter:

2 24 2

2
sc r G M

Gk e k e
λ    = =      

. (2.100)

The most obvious difference between the Reissner-Nordström and Schwarzschild

solutions is that the Reissner-Nordström spacetime now has two horizons located at

( 2) /sx r rλ λ λ± = ± − =
m
, (2.101)

where r+  is the exterior horizon and r−  is the interior horizon as illustrated in the phase

diagrams of Chapter 6.

At the beginning of this chapter it was noted that the Reissner-Nordström solution

corresponds physically to the exterior gravitational field of a charged spherically

symmetric black hole.  This case is given by the parameter value 2λ > .  But there are

other interpretations that may be given to (2.99) based on the ratio of e and M.

Specifically, the interpretation given to the case 2λ =  (i.e., r r+ −= ) is to the spacetime

exterior of a charged dust cloud in equilibrium between electrostatic repulsion and
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gravitational attraction.  Finally when 2λ < , the singularity is exposed at 0r = .

Although (2.99) was discovered in 1916 shortly after the Schwarzschild solution, the

physical interpretation for the case, 2λ = , was not given until 1965 by Bonnor [101] (see

Carter [102]).

The parameter value 2λ <  is widely considered to be nonphysical based on the

cosmic censorship conjecture (Penrose [103]) which states essentially that naked

singularities cannot exist in nature.  Therefore, assuming that the cosmic censorship

conjecture is valid, the maximum charge contribution to the total mass of the black hole

is given by the parameter value 2λ = .  This case gives the “extremal” Reissner-

Nordström black hole for which r r+ −=  and corresponds to the maximum attainable

charge that can accumulate based on the mechanism discussed by Eddington [77] and

Harrison [79] (see the Introduction for a further discussion).  Thus, the Reissner-

Nordström line element (2.98) (letting ( ) ( )A r r→ Λ ) is expressed in terms of two

fundamental length scales associated with the mass and charge (sr  and er ) respectively:

2

2 4 2

2

2 1 1
( ) 1

s
e

r r

MG Gke
r

c r c r

  Λ = − +      
14243 14243

, (2.102)

which according to the cosmic censorship conjecture must satisfy the relation:

1 1

22
e e

s s

r r

r rλ
= ⇒ ≤ . (2.103)

From the definition of λ  the ratio of /e M  is thus calculated for the extremal case (C ≡

Coulombs):

11max 8.61 10 /
e G

C kg
M k

−= ≈ × . (2.104)

Using dimensionless units (where / 1G k = ) the charge to mass ratio of the electron is

given by

212 10
e

e

m
−≈ × , (2.105)

and therefore
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21max 10
e

e e

M m
−  

≈  
 

. (2.106)

For an additional order of magnitude comparison the value of λ  given by (2.100) is thus

calculated for both an electron and proton:

43 364.8 10 ; 1.5 10e pλ λ− −≈ × ≈ × , (2.107)

and therefore 2λ <<  in these cases.  For a star like the Sun the order of magnitude

estimate given by Eddington [77] (see also Harrison [79]) gives approximately 100 C of

charge per solar mass and therefore

40 371
10 ; 1.7 10Sun

e

e e

M m λ
− − 

≈ ≈ × 
 

. (2.108)

But the cosmic censorship conjecture has not been proven, and recently a detailed

examination of several gravitational collapse scenarios [104] has shown that naked

singularities may develop in a variety of circumstances such as the collapse of radiation

shells; spherically symmetric collapse of perfect fluid; collapse of a spherical

inhomogeneous dust cloud [105], and the spherical collapse of a massless scalar field

[106].  Additional numerical studies have shown that under special circumstances, e.g.,

highly elongated “cigar” shaped mass distributions, that the formation of naked

singularities does occur.  But the conclusions that may be drawn from these numerical

studies are questionable given that the numerical solutions are not always well defined

over all spacetime domains of interest (e.g., the Riemann curvature tensor may become

singular; see also [78]).

Additional evidence that questions the plausibility of naked singularity solutions,

specifically in the Reissner-Nordström case, was given some time ago by Boulware

[107].  Boulware shows that a thin charged spherical shell will collapse to form a naked

singularity if and only if the matter energy density of the shell is negative.  But as Morris

and Thorne [108] have emphasized in their investigation of wormhole solutions to the

Einstein field equations, this does not necessarily prove that 2λ <  is nonphysical.  In

fact, they give physical examples where negative energy densities can be physically

reasonable and are actually required in special circumstances. Therefore, it is not

inconceivable that a Reissner-Nordström object with 2λ <  could exist, at least insofar as
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a negative energy density is concerned, although such objects must certainly be exotic as

noted by Morris and Thorne.  The viewpoint adopted here is non-committal on the

physical existence of such solutions - these parameter values are simply explored as

dynamical possibilities in Chapter 5 - not necessarily physical ones.
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Chapter  3   Gauge Gravity

As discussed in the Introduction several alternative quadratic curvature

Lagrangians have been considered as possible generalizations of Einstein’s theory.  The

motivation for considering such work has been to setup a framework for gravitation that

closely resembles a Yang-Mills type gauge theory in the hopes of unifying gravitation

with the other fundamental interactions.  As a consequence the action must be quadratic

in the Riemann curvature tensor - in contrast to the linear Einstein-Hilbert action

discussed in Chapter 2 (for a similar approach based on the local gauge invariance of the

Clifford algebra basis elements see Ref. [88]).  Therefore, to trace this development, a

brief review of the variational formulation of Yang-Mills gauge theory is discussed in the

first section of this Chapter.  Gauge Kinematics are then discussed in the following sub-

section followed by Gauge Dynamics which includes an analysis of the spherically

symmetric solutions.  In the final section of this Chapter an algebraic constraint is derived

by imposing equivalence between the standard and “gauge gravity” Palatini variational

procedures.

Yang-Mills Formalism

In 1954, Yang and Mills [109] introduced the idea of gauge fields through local

isotopic spin transformations.  If dynamical equations are to be defined over the internal

isovectors on a background Riemannian manifold, then a gauge covariant derivative must

be constructed (ψ  are assumed to be Lorentz scalars):

( , isospace; , event) ,

a a a b
b

a b

µ µ µ

µ ν

ψ ∂ ψ ψ
≡ ≡

∇ = + Γ
(3.1)

to insure invariance under the local isospin transformations:

( )a a a b
bS xψ ψ ψ′ ′→ = , (3.2)

(or what is the same, to define equivalence of isovectors at neighboring events of the

spacetime manifold (the kernel index method [83] is adopted here to denote the gauge

transformation, a a→ ′ )).  In (3.1), the connection (or “gauge potential”) is expressed as

a linear combination of the algebra basis, σ k :
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[ ]

( , , isovector),

a k a k a
b k b bk

i j k

µ µ µσ σΓ ≡ Γ = Γ

≡
(3.3)

generating the su( )2  Lie algebra:

[ , ] k
i j i j kσ σ ε σ= , (3.4)

with

[ ] (2)
k

ka a
b bS e SUθ σ= ∈ , (3.5)

an element of the Lie group, SU ( )2 † (see also Appendix D).  Applying (3.1) to (3.2), and

then requiring that

a a a b
bSµ µ µψ ψ ψ′ ′∇ → ∇ = ∇ , (3.6)

gives the required inhomogeneous transformation law of the gauge potentials:

( )a a c d a c
b c d b c bS S S Sµ µ µ∂′ ′ ′

′ ′ ′Γ = Γ − , (3.7)

or using matrix notation

′ = −− −Γ Γµ µ µ∂S S S S1 1( ) . (3.8)

Explicitly, we may consider (3.3) in the adjoint representation (i.e. the dimension

of the carrier space = the dimension of the algebra):

3 2

3 1

2 1

0

0

0

i
j

µ µ

µ µ µ

µ µ

 Γ − Γ
 Γ = − Γ Γ 
 Γ − Γ 

, (3.9)

since in this case

[ ] i i
k j jkσ ε= , (3.10)

are the structure constants of su( )2 .  In the spinor representation (3.3) becomes

3 1 2

1 2 3

i

i
A
B

µ µ µ
µ

µ µ µ

 Γ Γ − Γ
Γ =   Γ + Γ − Γ 

, (3.11)

since now the generators are the Pauli matrices, A
Bkτ :

1
2[ ] A A

k B Bkσ τ= , (3.12)

with k =  isovector index; ,A B =  isospinor index.
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The field equations for a
bµΓ  are derived from a variational principle.  The free-

field Lagrangian (see Uzes [110]) is taken in quadratic form:

1
4

c d
YM d cL g gλρ ωσ

λω ρσϕ ϕ⋅ ⋅= − , (3.13)

but for calculations let us use the first order form (for instance, Crawford [90]):

( )
1
4

1
2 ,

c d
d c

c d d d f l f
d c c f c f c

YML g g

g g

λρ κσ
λκ ρσ

λρ κσ
λκ ρ σ σ ρ ρ σ σ ρ

ϕ ϕ

ϕ ∂ ∂

=

− Γ − Γ + Γ Γ − Γ Γ
(3.14)

given that this choice yields the defining relation of the gauge fields (or isospin

curvature) in terms of the gauge potentials with respect to b
a

µνδ ϕ ⋅ ⋅ :

:b a a a a c a c
a b b b c b c b

µν
µν µ ν ν µ µ ν ν µδ ϕ ϕ ∂ ∂⋅ ⋅ = Γ − Γ + Γ Γ − Γ Γ , (3.15)

and in addition satisfies the Bianchi identity:

0a a a
b b bρ µν µ νρ ν ρµϕ ϕ ϕ∇ + ∇ + ∇ = . (3.16)

From the non-abelian structure in (3.15), the gauge field transforms as a rank 2 isotensor

under the local gauge transformation, a a
b bµν µνϕ ϕ ′

′→ :

a a d c
b c b dS Sµν µνϕ ϕ′ ′
′ ′= , (3.17)

insuring that the action constructed from (3.13) is both a scalar and isoscalar.  In the

interest of generality, let us consider the field equations resulting from variation with

respect to b
aµδ Γ , on a curved background spacetime.  The action in this case must be

4 1/ 2
YM YMS d q g L= ∫ . (3.18)

Performing the variation we get (note: this calculation is identical in structure to the

calculation worked out in detail beginning at (3.53); see also Treat [19] - equation (59)):

1/ 2 1/ 2( ) ( ) 0a a c c a
b c b b cg gρµ ρµ ρµ

ρ ν ν∂ ϕ ϕ ϕ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ Γ − Γ = , (3.19)

since σ
µνΓ  is symmetric.  We may express this result in terms of the covariant derivative

noting from (2.30) that 1/ 2 1/ 2 1/ 20g g g λ
µ µ λµ∂∇ = ⇒ = Γ , and calculating:

( ) .a a a a a c c a
b b b b c b b c

zero

R R Rρµ ρµ ρ νµ µ ρν ρµ ρµ
ρ ρ νρ νρ ν νϕ ∂ ϕ ϕ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∇ = + Γ + Γ + Γ − Γ

14243

(3.20)

                                                                                                                                           
†
 let us note, however, that this construction may be generalized to other Lie groups.



36

Solving for a
b

ρµ
ρ∂ ϕ ⋅ ⋅ , gives the final result:

1
2: 0b a

a bg ρµ
µ ρδ ϕ ⋅ ⋅Γ ∇ = . (3.21)

Gauge Kinematics

Continuing with this pattern, the Yang-Mills formalism may be carried over to the

general relativistic case beginning from the (global) invariance of special relativity, i.e.

the Lorentz group, SO( , )1 3 (see also Appendix D).  But there is another viewpoint that

can be taken in this respect (Fairchild [26]); that local invariance under general

coordinate transformations may be accounted for by introducing σ
µνΓ , i.e. the “gauge

potential” of (4, )Gl �  (the linear group of general coordinate transformations in 4

dimensions).  However, there are important differences to be noted in this approach

compared to the former case that make it awkward to keep close analogy with the gauge

theory formalism outlined in the previous section.  Briefly, the idea is to note that if

d x A d xµ µ ν
ν

′ ′= , (3.22)

denotes a general coordinate transformation on the spacetime manifold, then Aµ
ν
′  is a

non-singular 4 4×  matrix and therefore (4, )A Glµ
ν
′∈ � .  Following the gauge theory

pattern, next construct a covariant derivative with respect to (4, )Gl �  by introducing

σ
µνΓ  as a “gauge potential” to insure that b µ

λ∇  (for an arbitrary vector b µ ) transforms

as a tensor.  The gauge field in this case is just the Riemann curvature tensor given by

(2.9):

R ρ ρ ρ ρ λ ρ λ
σµν µ σν ν σµ λµ σν λν σµ∂ ∂= Γ − Γ + Γ Γ − Γ Γ , (3.23)

but here is where the analogy ends; the gauge potential, i
jµΓ , of SU ( )2  (for instance) has

indices in both coordinate and internal spaces - so there can be no symmetries with

respect to j and µ .  However, as noted earlier in Chapter 2, σ
µνΓ  is generally expressed

as a sum of both symmetric and antisymmetric contributions which suggests that index

symmetry on the lower indices should be considered fundamental in this case - in contrast

to the gauge connection ijµΓ .  Therefore, we will not proceed with the method based on
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(4, )Gl � , but instead carry through with calculations in a local Lorentz frame to follow

closely (in formalism) the traditional Yang-Mills type gauge theory pattern with

kinematics based on (1,3)SO .  It is this observation which motivates the introduction of

the tetrad basis as discussed below.

To begin, a brief review of local Lorentz invariance is given to set the notation

(see also Appendix D on group theory).  The discussion presented here is based on the

earlier presentation by Crawford [90].  The Lorentz group is defined as the orthogonal

group of transformations that leave invariant the Minkowski metric,

( 1, 1, 1, 1)ab abg η≡ = + − − − ,† where a, b denote Lorentz indices.  The transformations are

defined such that

a b
a b a b abg g′ ′ ′ ′= Λ Λ , (3.24)

with g gab a b= = + − − −′ ′ ( , , , )1 1 1 1  and a
a′Λ  denotes the Lorentz transformation.  A

special transformation may be introduced that shifts the coordinate dependence of gµν  to

an auxiliary set of quantities labeled as tetrads, aeµ  (note: additional discussion of the

tetrad basis is given in the following section; these are equivalently referred to as

vierbeins (or vierbein basis) by several authors, see e.g., Crawford [90]):

( ) ( ) ( )a b
abg q e q e q gµν µ ν= , (3.25)

where µ ν,  denote the coordinate space indices. Note however that local Lorentz

invariance may be considered in (3.24):

( ) ( )a b
a b a b abg q q g⋅ ⋅

′ ′ ′ ′= Λ Λ , (3.26)

still recovering the defining group relation, but aeµ  in (3.25) is not a Lorentz

transformation.

The covariant derivative in this case is defined by

a a a b
bV V Vµ µ µ∂∇ = + Γ , (3.27)

                                               
†
 note: in the literature it is more common to denote the Minkowski metric using the kernel symbol η

rather than g.  However, this notation is redundant when using the kernel index method since abg  is

already abη .
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which insures local Lorentz invariance of the derivative.  Here a
bµΓ  is the (spin)

connection and V a  denotes an arbitrary Lorentz vector.  The connection is expressed as a

linear combination of the algebra basis, σ cd :

[ ] aa cd a cd
b cd b cd bµ µ µσ σ⋅Γ ≡ Γ = Γ , (3.28)

generating the so( , )1 3  Lie algebra:

[ , ]σ σ σ σ σ σab cd ac bd ad bc bc ad bd acg g g g= − − + , (3.29)

where
1
2[ ] (1,3)

cd
cda a

b be SO
θ σΛ = ∈ . (3.30)

Again, by requiring that

a a a b
bV V Vµ µ µ

′ ′∇ → ∇ = Λ ∇ , (3.31)

the transformation of a
bµΓ  is determined by

( )a a c d a d
b c d b d bµ µ µ∂′ ′ ′
′ ′ ′Γ = Λ Γ Λ − Λ Λ . (3.32)

Tetrad Basis

A basic assumption of the gauge gravity theory is that the connection is in

Christoffel form after the Palatini variation.  As a result, the variational calculations are

simplified considerably in this approach by calculating in the tetrad basis.  In this section

a review of several mathematical details of the tetrad basis are given and then adopted for

calculations in the following section.  To begin, consider the condition that the

connection is metric as discussed in Chapter 2:

0gµ ρσ∇ = . (2.1)

Assuming that (2.1) is valid, it follows from the definition of the covariant derivative that

0 ( )a b a a
b a ae e e e eσ σ σ

ν µ µν µ ν ν µ∂∇ = ⇒ Γ = Γ + , (3.33)

or conversely

( )a a a
b b be e e eλ µ µ
ν λ µν ν µ∂Γ = Γ − . (3.34)

However, it should be noted that ( )b → µ  is not a coordinate transformation despite the

formal similarity taken by (3.33) (or (3.34)) to the inhomogeneous transformations laws

(3.7) (or (3.32)).  The relations given in (3.33) and (3.34) will be considered basic for
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calculations in the tetrad basis; therefore, we will assume that the metric condition is

valid throughout.  In addition, we note that the index antisymmetry of the Riemann tensor

(first index pair only):

R Rρσµν σρµν= − , (3.35)

is a consequence of σ
µνΓ  being metric.  To prove this consider

( ) gµ ν ν µ ρσ∇ ∇ − ∇ ∇ , (3.36)

and then assuming that ∇ =µ ρσg 0 , we get (3.35) (see Misner, et. al. [66], p. 326 (and

comment at bottom of p. 324).  See also Schouten [83], p. 145.  From (3.33), the torsion

tensor (2.5) is expressed

( )a a a b a b
a b bT e e e e eσ σ

µν µ ν ν µ µ ν ν µ∂ ∂= − − + Γ − Γ , (3.37)

and for the case that 0T σ
µν = , the spin connection and tetrads are no longer independent

since a
bµΓ  may be expressed in terms of the tetrads:

1
2 ( )a c a a a

b bc bc c beµ µΓ = Ω + Ω − Ω , (3.38)

where ( )a a a
bc b ce e e eµ ν

µ ν ν µ∂ ∂Ω = − , is the object of anholonomity (Schouten [83], p.

100, equation (9.2) and p. 170, equation (9.9)).

In the tetrad basis the Einstein-Hilbert action is expressed ( det ae eµ≡ ):

4[ ] b a
EH a bS e d q e e e Rµ ρ σ

α ρσ= ∫ . (3.39)

However, if we follow closely the gauge theory pattern, one would expect the correct

Lagrangian to be given in quadratic form:

1
4

c d
d cL g g R Rλρ ωσ

λω ρσ= − , (3.40)

by analogy with (3.13); i.e. a
bR ρσ  plays the role of a field strength tensor for the

gravitational field and a
bµΓ  is the gauge potential.  However, an important difference

between the gravitational and Yang-Mills version should be noted: a
bR ρσ  and a

bµΓ  are

related to the event geometry, but this is not necessarily true for the corresponding Yang-

Mills quantities.  The relationship between the Yang-Mills field and the event geometry

is discussed in detail in Ref. [111].  In the following section we give a discussion of the
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field equations resulting from (3.40) which provides the starting point for gauge gravity

and a brief review of the other forms that have been considered.

Gauge Dynamics

Field Equations

In previous sections an outline has been given of the gauge theory formalism.  A

basic result is that if ones considers general relativity as a gauge kinematic theory based

on SO( , )1 3 , then the action must be quadratic in the Riemann curvature.  However, there

are several quadratic invariants that can be formed using the Riemann tensor and

calculations for these cases have already been examined in an early paper by Stephenson

[10] † discussing:

1
2

1
2

1
2

4 2
1

4
2

4
3 .

S d q g R

S d q g R R

S d q g R R

ρσ
ρσ

ρ σ µν
σ µν ρ ⋅ ⋅

=

=

=

∫
∫

∫

(3.41)

The field equations resulting from (3.41) with respect to the Palatini variation (i.e. δ µνg

and σ
µνδ Γ  are assumed independent) are derived in [10] and are given by

( )
1
2

1
2

1

2

3

1
4

1
2

1
4

: 2 0
[ , ] :

: ( ) 0

: 0
[ , ] :

: ( ) 0

: 0
[ , ] :

: (

g R R g R
S g

g g R

g R R R R g R R
S g

g R

g R R R R R R g R R
S g

µν
µν µν

σ µν
µν σ

µν λ λ ρσ
µ νλ µ λν µν ρσ

σ µν
µν σ

µν ρ σ λ ρ σ λ ρ σ λ ρ λκ σ
µ ν ρ σ λ µ ρν σ λ σµλ ρν µν σ ρλκ

σ
µν ρ

δ
δ

δ

δ
δ

δ

δ
δ

δ

⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 − =Γ 
Γ ∇ =

 + − =Γ 
Γ ∇ =

− + + − =
Γ

Γ ∇
1
2 ) 0 ,g R µ ρν

σ ⋅ ⋅




=

(3.42)

where Stephenson has assumed that Γµν
σ  is symmetric in µν , but no a-priori relationship

is assumed to exist between the metric and connection (i.e., 0gρ µν∇ ≠ ).  However,

Stephenson and others have viewed (3.42) with little consequence and impose the

                                               
†
 Note: Stephenson did not have any intent along the lines of gauge theory.  At the time of his paper, these

formulations were of interest mainly for unifying the electromagnetic and gravitational fields and were also
previously considered by Weyl, Pauli, Eddington, and Lanczos as discussed in the Introduction.
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Christoffel form onto Γµν
σ  after the variation to obtain the following set of field

equations:

( )
1

1
4: 0

[ , ] :
: 0 ,

o

g R R g R
S g

g R

µν µν µν

σ µν
µν σ

δ
δ

δΓ = Γ

 − =Γ 
Γ ∇ =

(3.43)

2

1
4: 0

[ , ] :
: 0 ,

o

g R R g R R
S g

R

λ ρσ
µν µ λν µν ρσ

σ µν
µν σ

δ
δ

δΓ = Γ

 − =Γ 
Γ ∇ =

(3.44)

3

1
4: 0

[ , ] :
: 0 .

o

g R R g R R
S g

R

ρ σ λ ρ λκ σ
µν σµλ ρν µν σ ρλκ

σ ρ
µν ρ σµν

δ
δ

δ
⋅ ⋅ ⋅ ⋅

Γ = Γ

 − =Γ 
Γ ∇ =

(3.45)

As discussed in Chapter 2, the Palatini variation of the Einstein-Hilbert action

gives two field equations (for simplicity consider the free-field case): δ µνg  gives 0Rµν =

while δ µν
σΓ  leads to the Christoffel form:

Γ
o

g g g gµν
σ σλ

µ λν ν λµ λ µν∂ ∂ ∂= + −1
2 ( ) . (3.46)

However, is not clear that imposing 
o

σ σ
µν µνΓ = Γ  onto (3.42) should give anything useful

since this relation originates from 0gρ µν∇ =  (and the Einstein-Hilbert action) while

(3.42) is derived from (3.41).  Furthermore, imposing this condition seems inconsistent

with the Palatini approach - the consequences of each field equation for δ µν
σΓ  in (3.42)

should be worked out independently of (3.46) and therefore independently of the

Einstein-Hilbert action.  If this analysis leads to 
o

σ σ
µν µνΓ = Γ  then fine.  If not, then the

secondary field equations of (3.42) should be considered over (3.45) as the starting point

for a gauge theory of gravitation.  In summary, the assumption of (3.46) after a Palatini

style variation of 3Sδ  with respect to the connection constitutes the “gauge gravity”

theory as discussed in the literature.  At first glance this analysis would appear flawed

and at least inconsistent with the Palatini variational procedure, but in the final section of

this Chapter a constraint is obtained from this approach that places a restriction on the

solutions satisfying (3.45).  The condition is obtained by requiring equivalence between

the field equations obtained from the standard variational procedure (Christoffel form is
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assumed at the outset) and the gauge gravity field equations that are derived by imposing

the Christoffel form after the fact.

An important relation that will be used later in the analysis is discussed by

Lanczos [6] who has shown that the field equations resulting from the variation of (3.41)

are not all linearly independent since

1 2 3/ ( 4 ) 0g S S Sµνδ δ − + ≡ , (3.47)

is an identity in a 4-dimensional spacetime when using the “standard” variational

procedure.  However, (3.47) is not an identity for the Palatini field equations obtained by

imposing the Christoffel form of the connection after the variation.  Therefore, (3.47) will

have important consequences for the subsequent analysis.  Furthermore, (3.47) may be

expressed as the Euler topological invariant:
1
24[ ]ES g d q g R Rλκωη ρσ µν

ρσµν λκ ωηε ε ⋅ ⋅= ∫ . (3.48)

To see this, expand the product:

λ λ λ λ
ρ σ µ ν
κ κ κ κ
ρ σ µ νλκωη

ρσµν ω ω ω ω
ρ σ µ ν
η η η η
ρ σ µ ν

δ δ δ δ
δ δ δ δ

ε ε
δ δ δ δ
δ δ δ δ

= − , (3.49)

and then (3.48) reduces to the Gauss-Bonnet form (for instance [112]; compare with

(3.47) and (3.41)):

( )4 1/ 2 21
4[ ] [ ] 4G B ES g S g d q g R R R R Rρσ ρ σ µν

ρσ σ µν ρ
⋅

⋅ ⋅= − = − +∫ . (3.50)

But since (3.48) is a topological invariant, inspection of (3.50) shows that (3.47) is true

by identity.

The first set of equations (3.43) have been proposed by Littlewood [94] and then

later considered by Pirani [95].  Pirani has shown that these equations have a solution

leading to 16  of the perihelion precession predicted by the Schwarzschild case, and in the

opposite direction.  The second set have been discussed by Misner and Wheeler [113] in

their study of electromagnetism and gravitation as pure geometry.  In their paper, the

general relativistic field equations are coupled with electromagnetic sources (i.e. (2.85))

and then solved for the Maxwell field strength tensor, Fρσ , in terms of the Ricci tensor.

Substituting this result into Maxwell’s equations they obtain the coupled Einstein-
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Maxwell equations in purely geometric form (i.e. using only Rρσ ).  For the relevance of

their work to δ S 2  in (3.44), the algebraic condition that Fρσ  be expressed in terms of

Rρσ  is equivalent to R = 0 , and in addition that 1
4 0R R g R Rλ ρσ

µ λν µν ρσ− = , is satisfied.

Returning to (3.41), the remaining discussion will focus on S 3  since this is the

starting point for gauge gravity.  This case has also been considered by Fairchild [33]

given the minimal assumptions considered earlier in Chapter 2 that the connection is not

assumed metric or symmetric.  In the remaining part of this section the second δS 3  field

equation in (3.45) will be derived by working in the tetrad basis.  Therefore, the starting

assumption is that the torsion is nonzero since ae µ  and b
aµΓ  are no longer dependent

variables as may be seen from (3.37) and (3.38).  Note however that the event connection

is assumed to be metric to obtain (3.33)).

Since the “gauge gravity” theory consists of the field equations obtained with

respect to the connection, we will consider in some detail a calculation of the secondary

field equations for δS 3  in (3.45).  To begin, the Lagrangian is taken in the first order

form:

( )
3

1
4

1
2

[ , ]

,

c d
d c

c c c c f c f
d d d f d f d

L g g g R R

g g R

ρλ σω
ρσ λω

ρλ σω
ρσ ρ σ σ ρ ρ σ σ ρ∂ ∂

Γ =

− Γ − Γ + Γ Γ − Γ Γ
(3.51)

and the first set of field equations are expressed in the coordinate basis:

1
4: 0g H R R g R Rµν ρ σ λ ρ λκ σ

µν σµλ ρν µν σ ρλκδ ⋅ ⋅ ⋅≡ − = . (3.52)

For simplicity we assume that no sources are present (Fairchild has considered the

possibility for nonzero sources [26]). The field equations are thus calculated by variation

with respect to the connection:

1
23 4

3

[ , ]
0 / b

ab
a g

S e
d q g L µ

µ

δ
δ δ

δ
Γ

= Γ
Γ

= ∫ , (3.53)

to obtain:
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( ) ( )3 1
2

[ , ]
/ /

( / ) ( / )

( / ) ( / ) .

c c b c b
d d a d ab

a g

c b f c f b
f a d f d a

c b f c f b
f a d f d a

L e
e R

e

ρσ
ρ σ µ σ ρ µ

µ

ρ µ σ ρ σ µ

σ µ ρ σ ρ µ

δ
∂ δ δ ∂ δ δ

δ

δ δ δ δ

δ δ δ δ

⋅ ⋅

⋅

Γ = − Γ Γ − Γ ΓΓ

+ Γ Γ Γ + Γ Γ Γ

− Γ Γ Γ − Γ Γ Γ 

(3.54)

Noting that

( ) ( )
( ) ( )

/ /

/ ( ) / ( ) ,

c c b c c b
d d a d d a

c b c c b c
d a d d a d

R e R e

R e R e

ρσ ρσ
ρ σ µ ρ σ µ

ρσ ρσ
σ µ ρ σ µ ρ

∂ δ δ ∂ δ δ

δ δ ∂ δ δ ∂

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

 Γ Γ = Γ Γ 
− Γ Γ − Γ Γ

(3.55)

equation (3.54) becomes

( ) ( ){
( ) ( )
( ) ( )

1
20 / / ( )

/ ( ) /

/ ( ) / ( )

( / ) ( /

c c b c b c
d d a d a d

c b c c c b
d a d d d a

c b c c b c
d a d d a d

c c b f c c f
d f a d d f d

R e R e

R e R e

R e R e

R e R

ρσ ρσ
ρ σ µ σ µ ρ

ρσ ρσ
σ µ ρ σ ρ µ

ρσ ρσ
ρ µ σ ρ µ σ

ρσ ρσ
ρ µ σ ρ σ

∂ δ δ δ δ ∂

δ δ ∂ ∂ δ δ

δ δ ∂ δ δ ∂

δ δ δ δ

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 = − Γ Γ − Γ Γ 
 − Γ Γ − Γ Γ 

+ Γ Γ + Γ Γ

+ Γ Γ Γ + Γ Γ )

( / ) ( / ) ,

b
a

c c b f c c f b
d f a d d f d a

e

R R e

µ

ρσ ρσ
σ µ ρ σ ρ µδ δ δ δ⋅ ⋅ ⋅ ⋅

Γ

− Γ Γ Γ − Γ Γ Γ 

(3.56)

and then setting the boundary terms:

( )/c c b
d d aR eρσ

ρ σ µ∂ δ δ⋅ ⋅ Γ Γ   and ( )/c c b
d d aR eρσ

σ ρ µ∂ δ δ⋅ ⋅ Γ Γ  , (3.57)

to zero this equation simplifies to

( ){ ( )
( ) ( )
1
20 / ( ) / ( )

/ ( ) / ( )

( / ) ( / )

( / ) ( /

c b c c b c
d a d d a d

c b c c b c
d a d d a d

c c b f c c f b
d f a d d f d a

c c b f c c f
d f a d d f d

R e R e

R e R e

R e R e

R e R

ρσ ρσ
σ µ ρ σ µ ρ

ρσ ρσ
ρ µ σ ρ µ σ

ρσ ρσ
ρ µ σ ρ σ µ

ρσ ρσ
σ µ ρ σ ρ

δ δ ∂ δ δ ∂

δ δ ∂ δ δ ∂

δ δ δ δ

δ δ δ δ

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

= − − Γ Γ − Γ Γ

+ Γ Γ − Γ Γ

+ Γ Γ Γ + Γ Γ Γ

− Γ Γ Γ − Γ Γ Γ }) .b
a eµ 

(3.58)

By using the identity

( )4 41
2( ) ( ) ( ) /c c a ca b

d b d db aq d q e q g g q q eµ
σ σ µδ δ δ δ δ δ′ ′ ′Γ = − Γ −∫ , (3.59)

(3.58) expands to
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( ){
( ) ( )
( ) ( )

( )

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2

0 ( )

( ) ( )

( )

c a ca c
b d db d

c a ca c c a ca c
b d db d b d db d

c a ca c c c a ca f
b d db d d b f fb d

c c f a fa c
d f b d db d

g g R e

g g R e g g R e

g g R e R g g e

R g g e R

µ ρσ
σ ρ

µ ρσ µ ρσ
σ ρ ρ σ

µ ρσ ρσ µ
ρ σ ρ σ

ρσ µ ρσ
ρ σ

δ δ δ ∂

δ δ δ ∂ δ δ δ ∂

δ δ δ ∂ δ δ δ

δ δ δ

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

= − − −

− − + −

− − + − Γ

+ Γ − − ( )
( ) } 4

2

1
2 ( ) / .

c a ca f
b f fb d

c c f a fa
d f b d db

g g

R g g q q e

µ
σ ρ

ρσ µ
σ ρ

δ δ δ

δ δ δ δ⋅ ⋅

− Γ

′− Γ − × −

(3.60)

Simplifying algebraically and then integrating this result, the following field equation is

obtained (compare to (3.19)):

( )( ) 0a a c c a
b c b b ce R e R Rρµ ρµ ρµ

ρ ν ν∂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ Γ − Γ = . (3.61)

Equation (3.61) may be expressed in the alternative form

( ) 0,a a a a c c a
b b b c b b cR R T R R Rρµ ρ νµ ρµ ρµ ρµ

ρ νρ ρ ν ν∂ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ Γ + + Γ − Γ = (3.62)

after substituting (this equation may be derived from (2.30)):

( ) ( )e e T e Tν ν ν
ρ ρν νρ ρν ρ∂ = Γ + = Γ + , (3.63)

into (3.61) and then switching dummy indices on the first term.  Next use the definition

of the covariant derivative:

1
2

a a a a a c c a
b b b b c b b cR R R T R R Rρµ ρµ ρ νµ µ ρν ρµ ρµ

ρ ρ νρ ρν ν ν∂⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∇ = + Γ − + Γ − Γ ,

and solve for a
bR ρµ

ρ∂ ⋅ ⋅  to obtain the generally covariant result:

1
2 0a a a

b b bR T R T Rρµ ρµ µ ρν
ρ ρ ρν⋅ ⋅ ⋅ ⋅ ⋅ ⋅∇ + + = . (3.64)

The corresponding coordinate basis result is therefore:

1
2 0R T R T Rλ ρµ λ ρµ µ λ ρν

ρ κ ρ κ ρν κ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∇ + + = . (3.65)

If the torsion vanishes the gauge gravity field equations are thus obtained (lowering the

λ and µ  indices, changing κ ν→ , and noting symmetry on the first and last index pair):

0Y R ρ
σµν ρ σµν≡ ∇ = . (3.66)

The field equations (3.66) may be expressed in an equivalent form using the torsion-free

Bianchi identity:

0R R Rρ ρ ρ
λ σµν µ σνλ ν σλµ∇ + ∇ + ∇ ≡ . (3.67)

Transvecting on λ  and ρ  (3.67) becomes

0R R Rρ
ρ σµν µ σν ν σµ∇ − ∇ + ∇ ≡ , (3.68)
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and therefore (3.66) is equivalent to

[ ] 0Y Rσµν µ ν σ≡ ∇ = . (3.69)

Contracting once again on (3.68) gives

1
2R Rρ

ρ µ µ∇ ≡ ∇ , (3.70)

but then contracting (3.69) and combining with (3.70) shows that:

∇ = ⇒ =µ R R const0 . . (3.71)

Spherically Symmetric Solutions Part I: ( )( )+ +

As a result of (3.71) solutions to (3.66) will be spaces of constant curvature

although spaces of constant curvature need not be Einstein spaces (as noted by Schouten

[83], p. 148; note: by definition - an Einstein space is one in which the Ricci tensor is a

scalar multiple of the metric – see Petrov [114]).  This statement is easily proven by

counter-example which is provided by (3.73) and (3.74) discussed below.  In addition,

the fact that R is constant does not necessarily imply that the metric satisfies (3.66)

(although the reverse is certainly true as pointed out above).  An example is given by

(3.103) as discussed below.

An immediate result is that solutions to the Einstein field equations

Rµν = 0 , (3.72)

satisfy (3.69).  However, there have been objections to (3.69) on the grounds that in

addition to (3.72), several other nonphysical solutions satisfy these equations.  For

example, Pavelle [31] and Thompson [32] have shown that

2 2 2 2 2 2 2
1 1

2 2 2 2

(1 / ) (1 / )

sin ,

ds c r dt c r dr r d

d d dθ θ ϕ

− −= + − + − Ω

Ω = +
(3.73)

is a solution to (3.69).  But this is the solution already shown by Pirani [95] to give an

erroneous value for the perihelion precession (see comment below (3.50)).  Furthermore,

the metric discussed by Thompson [32]:

2 2 1 2 2 2
1(1 / )ds dt c r dr r d−= − − − Ω , (3.74)

satisfies (3.69) but gives an incorrect Newtonian limit.  Another class of solutions found

by Ni [25]:
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2 2 2 1 2 2 2
1 2(1 / )ds dt c r c r dr r d−= − + + − Ω , (3.75)

satisfies (3.69) with c1  and c 2  = constant, but gives an incorrect value for the redshift as

noted by Ni.

The origin of these solutions may be clarified by summarizing the differential

equations that follow from (3.52) and (3.70).  To begin, assume a spherically symmetric

solution in exponential form:

2 2 ( ) 2 2 ( ) 2 2 2A r B rds e dt e dr r d= − − Ω , (3.76)

which greatly simplifies the structure of the differential equations that are considered in

this Chapter compared to those obtained from the “standard” form, (2.49).  The

Christoffel symbols and Ricci tensor for this metric are thus given by (Appendix B):

2( ) 2 2 2; ; ; sin

1/ ; cos sin ; cot ,

t t
r t t r

r A B r r B r B
t t r r

r r r r

A

e B e e r

r

θ θ ϕ ϕ

θ θ ϕ ϕ θ ϕ
θ θ ϕ ϕ ϕ ϕ ϕ θ

θ

θ θ θ

− − −

′Γ = Γ =

′Γ = Γ = Γ = Γ = −

Γ = Γ = Γ = Γ = Γ = − Γ =

(3.77)

and

2( ) 2

2

2 2

2

[( ) 2 / ] 0

( ) 2 /

[( ) ( 1)]

sin .

A B
tt

rr

B B

R e A A A B A r

R A A A B B r

R re A B e

R R

θθ

ϕϕ θθθ

−

−

′′ ′ ′ ′ ′= + − + =
′′ ′ ′ ′ ′= + − −

′ ′= − − − −

=

(3.78)

respectively.  The Ricci scalar simplifies to

2 2 2 22 [( ) 2( ) / ( 1) / ]B BR e A A A B A B r e r− ′′ ′ ′ ′ ′ ′= + − + − − − , (3.79)

and for later reference the Riemann and Weyl tensors are also calculated in Appendix B.

Beginning first with the 0H µν =  field equations (3.52) the nonzero components

are given by:

2( 2 ) 2 2 2 2 2 2 2 4

2 2 2 2 2 2 2 2 4

2 4 2 2 2 2 4

2

[( ) 2( ) / ( 1) / ]

[( ) 2( ) / ( 1) / ]

[( ) ( 1) / ]

sin ,

A B B
tt

B B
rr

B B

H e A A A B A B r e r

H e A A A B A B r e r

H r e A A A B e r

H H

θθ

ϕϕ θθ θ

−

−

−

′′ ′ ′ ′ ′ ′= + − + − − −
′′ ′ ′ ′ ′ ′= − + − − − − −
′′ ′ ′ ′= + − − −

=

(3.80)

and the “gauge gravity” equations (3.70) simplify to
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2( ) 2 2 21

2 2 2 2

2

[ ( ) 2( )( ) 2 / ]

[( ) ( ) 2 ( ) ( 1) / ]

; ; sin .

A B
t r t r

B B
r

t t r t rt r r r r r

d
drY e A A A B B A A A B A r

Y re A A A B A B B A B e r

Y Y Y Y Y Y Y

θ θ

θ θ θ θ ϕϕ ϕ ϕ θ θ θ

−

−

′′ ′ ′ ′ ′ ′′ ′ ′ ′ ′= + − − − + − −

′′ ′ ′ ′ ′′ ′′ ′ ′ ′= − + − − − + − − −

= − = − = − =

(3.81)

Considering the first set of equations (3.80), by inspection there are four obvious solution

possibilities:

2 2 2( 1) /

.

BA A A B e r

A B

′′ ′ ′ ′+ − = ± −
′ ′= ±

(3.82)

Considering (3.81) separately leads to the system:

2 2 21

2 2 2 2

( ) 2( )( ) 2 / 0

( ) ( ) 2 ( ) ( 1) / 0 ,

r

B

d
dr A A A B B A A A B A r

A A A B A B B A B e r

′′ ′ ′ ′ ′ ′′ ′ ′ ′ ′+ − − − + − − =

′′ ′ ′ ′ ′′ ′′ ′ ′ ′+ − − − + − − − =
(3.83)

and then by substituting the various possibilities from (3.82) into (3.83) (i.e., ( )( )+ + ,

( )( )+ − , ( )( )− + , ( )( )− − ) it is apparent that only two cases will give a simultaneous

solution of both 0H µν =  and 0Yσµν = .  These correspond to the ( )( )+ +  and ( )( )− −

equations (see Appendix B).

To begin, the ( )( )+ +  differential equations of (3.82), are given by

2 2 2( 1) /

,

BA A A B e r

A B

′′ ′ ′ ′+ − = + −
′ ′= +

(3.84)

and as noted above satisfy 0Yσµν =  identically.  Combining the two equations in (3.84)

gives a second order, nonlinear, inhomogeneous differential equation:

2 2( 1) /BB e r′′ = − . (3.85)

Equation (3.85) is expressed in an alternative form using the variable substitution:

1
2 ln ( )B r→ − Λ , (3.86)

to give

2 2 2 2

2

/ 2 / 2 1/ 1/

1 1
0 .

2

r r

d

dr r r

′′ ′Λ Λ − Λ Λ + Λ =
′Λ ⇒ + + = Λ Λ 

(3.87)

A solution to this differential equation is given by the Pavelle-Thompson solution,

2
1(1 / )c rΛ = + , where 1c  is an integration constant.  It is worthwhile to pause for a
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moment to summarize the forms of the metric that result from the second ±  equation of

(3.82) using the variable substitution in (3.86):

2 1 2 1 2 2 2

2 2 1 2 2 2

2 1 2 1 2 2 2

2 2 1 2 2 2

( )( )

( )( )

( )( )

( )( ) ,

A B

A B

A B

A B

ds dt dr r d

ds dt dr r d

ds dt dr r d

ds dt dr r d

− −

= +

−

= −

− −

= +

−

= −

+ + ⇒ = Λ − Λ − Ω

+ − ⇒ = Λ − Λ − Ω

− + ⇒ = Λ − Λ − Ω

− − ⇒ = Λ − Λ − Ω

123

123

123

123

(3.88)

noting that only two of these forms are distinct.  The Pavelle-Thompson solution has the

form of the first equation in (3.88) with Λ  given above.

Note on The Vanishing Ricci Scalar and Weyl Tensor Solutions

The Pavelle-Thompson metric (3.73) also has a vanishing Ricci scalar and Weyl

tensor which has consequences for the theory of conformal gravity discussed in Chapter 5

as well as for the gauge gravity field equations.  To see this note that the Weyl tensor

calculated from (3.76) has 24 nonzero components, but interestingly every component

contains the following differential equation as a common factor:

2 2 2[( ) ( ) / ( 1) / ]BC A A A B A B r e rρ
σµν ′′ ′ ′ ′ ′ ′+ − − − − −: . (3.89)

Comparing (3.89) with the Ricci scalar of (3.79), the following result is obtained:

2 2 2 0( 1) /

0 ,

B RA A A B e r

CA B ρ
σµν

=′′ ′ ′ ′+ − = + − ⇒  == + 
(3.90)

which is just the ( )( )+ +  case discussed above.  Therefore, we make the observation that a

vanishing Ricci scalar and Weyl tensor gives a class of simultaneous solutions to the

gauge gravity field equations, i.e., both 0H µν =  and 0Yσµν =  are satisfied.  The Pavelle-

Thompson solution is just one example.

The theory originating from the field equations (3.90) is Nordström’s theory [34]

and was noted previously by Ni [25] and later by Baekler and Yasskin [37] as a

simultaneous solution to the gauge gravity field equations.  But also note that other
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differential equations may be satisfied that give sufficient conditions for a vanishing

Ricci scalar:

{
2

2

0
0

( 1) / 2B

A A A B
R

A B e r

′′ ′ ′ ′+ − =
⇒ =

′ ′= + −
, (3.91)

{2. ( 1) / 2 0BA const B e r R′ = ⇒ = − − ⇒ =  , (3.92)

{2 2 2( 2 ) 4 ( 1) 0BA B r B B r B e R′′ ′ ′ = − ⇒ − + = − ⇒ =  , (3.93)

and the Weyl tensor is considered separately:

{
2

2

0
0

( 1) /B

A A A B
C

A B e r
ρ
σµν

′′ ′ ′ ′+ − =
⇒ =

′ ′= − −
, (3.94)

{2. ( 1) / 0 0BA const B e r C ρ
σµν′ = ⇒ = − = ⇒ =  , (3.95)

{2 2 2( 2 ) 2 ( 1) 0BA B r B B r B e C ρ
σµν′′ ′ ′ = − ⇒ − − = − − ⇒ =  , (3.96)

which are not equivalent to the simultaneous condition of (3.90), i.e., there could be cases

where the Ricci scalar vanishes (recall that this case is Littlewood’s theory [94]), but the

Weyl tensor does not and vice-versa.

Considering first the Ricci scalar equations (3.91), eliminate A′  using the second

equation and then the first equation simplifies to:

2 2 2 2(3 1) / 2 ( 1)( 3) / 4 0B B Br B e rB e e′′ ′+ − + − − = , (3.97)

which may be expressed in the alternative form using 1
2 ln ( )B r= − Λ :

2 22 ( ) ( 3) (3 1)( 1) 0r r′ ′′ ′Λ − Λ Λ + Λ − Λ + Λ − Λ − = . (3.98)

Although solutions of (3.98) imply that the Ricci scalar vanishes, the converse is not

necessarily true since 2 2
1(1 / )c rΛ = +  (of the Pavelle-Thompson solution) does not

satisfy (3.98), but 1
1(1 / )c r −Λ = +  of the Thompson solution (3.74) does.  The difference

is given by the assumed relation between A and B: the Pavelle-Thompson solution

corresponds to A B′ ′=  from (3.90), while A′  and B′  of the Thompson solution satisfies

(3.97) with .A const′ = .  However, (3.97) could have more general solutions other than

the Thompson solution.  The case, .A const′ = , is just one special form and is discussed

next.

The second differential equation resulting from (3.92), .A const′ = , is given by
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2( 1) / 2BB e r′ = − − , (3.99)

which may be expressed using the change of variable 1
2 ln ( )B r= − Λ :

1 0r ′Λ + Λ − = . (3.100)

The differential equation (3.100) is identical to the differential equation discussed earlier

for the Schwarzschild case and therefore, 11 /c rΛ = + , is the solution.  As a result, this

metric gives a (trivially) more general form of Thompson’s solution (3.74) (since the

term preceding 2dt  may be an arbitrary constant).  The last case of 0R =  is obtained by

substituting A B= −  into (3.79) and is given by (3.93).  The differential equation is thus:

2 2 2( 2 ) 4 ( 1)Br B B r B e′′ ′ ′− + = − , (3.101)

which may be expressed using the change of variable (3.86):

2 4 2( 1) 0r r′′ ′Λ + Λ + Λ − = . (3.102)

This case is satisfied by the Schwarzschild function, 11 /c rΛ = + , as may be verified by

direct substitution, but is not satisfied by either the Pavelle-Thompson or Thompson

solutions.  In addition, 2
11 /c rΛ = + , also satisfies (3.102) and therefore an additional

vanishing Ricci scalar solution is given by

2 2 2 2 1 2 2 2
1 1(1 / ) (1 / )ds c r dt c r dr r d−= + − + − Ω . (3.103)

However, one may check by direct substitution that (3.103) does not satisfy the 0H µν =

or 0Yσµν =  field equations, nor does it have a vanishing Weyl tensor (Appendix B).

Interestingly, note also that (3.103) corresponds to the Reissner-Nordström solution of

the Einstein field equations with zero mass.†

Next consider the vanishing Weyl tensor equations (3.94).  The second equation is

now used to eliminate A′  so the first equation simplifies to

2 2 2 2(3 1) ( 1) 0B B Br B e r B e e′′ ′− − + − = , (3.104)

which may be expressed in the alternative form using (3.86):

2 2( ) ( 3) 2( 1) 0r r′′ ′ ′Λ Λ − Λ + Λ − Λ + Λ − = . (3.105)

Equation (3.105) is satisfied by

                                               
†
 I thank Jim Crawford for pointing out this detail.
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1
1(1 )c r −Λ = + , (3.106)

and also

2 1
1(1 )c r −Λ = + . (3.107)

However, in either case, we would still have to solve for A′  from the differential

equation: 2( 1) /BA B e r′ ′= − − , to obtain the full solution.  Next consider the case when

A′  is constant giving

2( 1) / 0BB e r′ = − = . (3.108)

Using (3.86) results in the following differential equation in Λ :

2 2 0r ′Λ − Λ + = , (3.109)

which has the solution:

2
11 c rΛ = + . (3.110)

Equation (3.110) has a vanishing Weyl tensor, but does not satisfy (3.90).  However, this

equation also originates from the ( )( )− −  equations of (3.82) as a special case of (3.119)

(which is discussed at greater length below), and therefore satisfies both the 0H µν =  and

0Yσµν =  equations.  The A B= −  case is given by (3.96) and results in the differential

equation:

2 2 2( 2 ) 2 ( 1)Br B B r B e′′ ′ ′− − = − − , (3.111)

which is expressed using (3.86):

2 2 2 2 0r r′′ ′Λ − Λ − Λ − = . (3.112)

A solution to (3.112) is given by

2
1 21 c r c rΛ = + + , (3.113)

and therefore

2 2 2 2 1 2 2 2
1 2 1 2(1 ) (1 )ds c r c r dt c r c r dr r d−= + + − + + − Ω , (3.114)

gives a solution to the 0C ρ
σµν =  field equations as well as the special cases: 1c  or 2 0c = .

However, (3.114) does not satisfy either gauge gravity field equation since the Ricci

scalar is nonzero in this case, but the solution does have consequences for the

conformally invariant theory of gravitation discussed in Chapter 5 (as does as the special

case, 2 0c = ).
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Spherically Symmetric Solutions Part II: ( )( )+ − , ( )( )− + , ( )( )− −

Continuing with the other solution possibilities of (3.82), it is important to note

that the first two ( ( )( )+ − and ( )( )− + ) are not necessarily solutions of both gauge gravity

field equations but rather only for (3.82).  Beginning with the ( )( )+ −  equations, these

simplify to the following differential equation:

2 2 2 0r ′′Λ + Λ − = , (3.115)

which may be integrated to give

1/ 2 7 / 2 7 / 2
1 21 cos( ln ) sin( ln )r c r c r Λ = + −  , (3.116)

with 1c  and 2c  integration constants. Equation (3.116) gives an unreported exact

solution to the 0H µν =  equations but does not satisfy 0Yσµν = . Nevertheless, the

solution has some interest given that all other previously reported exact solutions of the

gauge gravity equations, besides the Pavelle Thompson solution, satisfy only 0Yσµν =

and not 0H µν = .

The structure of the ( )( )− +  equations of (3.82) is similar in form to the ( )( )+ +

equation (3.87):

2 2 2 2

2

/ 2 / 2 1/ 1/

1 1
0 .

2

r r

d

dr r r

′′ ′Λ Λ − Λ Λ − Λ = −
′Λ ⇒ − − = Λ Λ 

(3.117)

However, the Pavelle-Thompson solution does not work in this case.  Furthermore, there

are no other nontrivial solutions known to satisfy (3.117).  Finally, the ( )( )− −  equations

give the second set of equations that satisfy 0Yσµν =  identically.  In this case, (3.82)

simplifies to:

2 2 2 0r ′′Λ − Λ + = , (3.118)

which may be integrated to give the solution:

2 2 1 2 2 2

2
1 2(1 / ).

ds dt dr r d

c r c r

−= Λ − Λ − Ω

Λ = + +
(3.119)
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Equation (3.119) is the solution first obtained by Kottler [115] as a solution to Einstein’s

field equations with cosmological constant, 2c :

23R c gµν µν= . (3.120)

The solution was later noted as a solution to 0Yσµν =  by Pavelle [23]† and also by

Fairchild [33].  As a result, this metric has the important property that its Ricci tensor is a

scalar multiple of the metric and is therefore an Einstein space.

There are other solutions to the gauge gravity equations that do not necessarily

satisfy the 0H µν =  equations.  One case to consider is by setting A′  to zero in (3.76)

which results in (3.118) and therefore (3.119).  But there is an important difference in this

case since the coefficient of 2dt  is constant.  This particular form was noted by Ni and

was listed earlier in (3.75):

2 2 2 1 2 2 2
1 2(1 / )ds dt c r c r dr r d−= − + + − Ω . (3.121)

The extraneous solution (3.74) noted by Pavelle [31] and Fairchild [26] is simply a

special case of Ni’s solution with 2 0c = :

2 2 1 2 2 2
1(1 / )ds dt c r dr r d−= − + − Ω . (3.122)

Another special case is obtained when 1 0c =  which gives the Einstein universe solution:

2 2 2 1 2 2 2
2(1 )ds dt c r dr r d−= − + − Ω , (3.123)

which was originally pointed out as a gauge gravity solution by Thompson [32].  The

Einstein universe solution also has a vanishing Weyl tensor but the Ricci scalar is non

vanishing ( 26R c= ) and is discussed in more detail below.

As a check one might wonder if setting B′  to zero in the 0Yσµν =  equations

would lead to any other solutions.  But the only solution in this case is given by

.A const=  since every component of the resulting equations contains a factor of A′ .  As

a result, this case is trivial.  Another possibility to consider is setting 2 0A A A B′′ ′ ′ ′+ − =

in (3.81).  In this case the equations simplify to

                                               
†
 note, however, that Pavelle’s listing of Kottler’s solution is incorrect: 2

1 2( / )c r c rΛ = − + , which does

not satisfy the gauge gravity field equations.
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2

2 2

2 / 0

( ) 2 ( ) ( 1) / ,B

A r

A B B A B e r

′ =
′′ ′′ ′ ′ ′− − − = − −

(3.124)

which are only consistent if .A const= .  Therefore the second equation reduces to the

differential equation:

2 2 22 ( 1) /BB B e r′′ ′− = − , (3.125)

or in terms of Λ :

2 2 2 0r ′′Λ − Λ + = , (3.126)

which again results in the Ni solution but in a trivially more general form since then A is

an arbitrary constant.

Auxiliary Algebraic Constraints

Given these extraneous solutions to the gauge gravity field equations, Pavelle [31]

and Thompson [32] have suggested that there should be an additional constraint placed

on the solution set of (3.69) to eliminate the nonphysical solutions.  Following this

suggestion, Fairchild [33] has proposed that the constraint be given by the “second set” of

field equations obtained from the first equation of δ S 3  in (3.45) - by variation with

respect to δ µνg .  However, this approach turned out to be incorrect as later noted by

Fairchild [116, 42†].  The purpose of this section is to discuss a condition that eliminates

several (but not all) of the extraneous solutions to the gauge gravity equations.  The

condition is derived by first noting that the Einstein-Hilbert action is special in that its

variation gives identical results using either the standard or Palatini variational

procedures.  Specifically, the field equations that are derived from the Einstein-Hilbert

action by assuming the connection is in Christoffel form from the outset are equivalent to

those obtained when the connection is taken as an independent variational parameter.

However, this “symmetry” no longer applies when the action is taken in quadratic form

and the gauge gravity “Palatini” procedure is applied – which should be distinguished

from the true Palatini procedure where the connection and metric are completely

independent (as considered in Chapter 2).  As a result, imposing this condition onto the

                                               
†
 see footnote 27 of Fairchild’s paper.
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resulting field equations originating from the quadratic curvature Lagrangians leads to an

auxiliary algebraic constraint that restricts the class of spacetime solutions satisfying the

gauge gravity field equations.  These constraints may be equivalently derived as a

contraction of the integrability conditions for the Ricci tensor as discussed below.

First calculate the metric variation of the Gauss-Bonnet action (3.50) using the

“standard” variational procedure.  The result of this calculation is given by (Appendix B -

see also Parker; Christensen [117]):

( ) ( )1 1
4 4

1
2

0

2( ) 2 ,

R R g R R R g R R

R R g R R R R

λρσ ρσλκ
µν µν µλρσ ν µν ρσλκ

ρ ρσ σ ρ
µ ρν µν ρσ ρ µσν

⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅

≡ − − − −

+ − +
(3.127)

noting especially that (3.127) is an identity.  It is worthwhile to pause for a moment and

consider another useful identity that may be derived from (3.127) using the

decomposition (see for example Carmeli [93], p. 72; or Weinberg [92], p. 145):

( )
( )

1
2

1
6 ,

R C g R g R g R g R

g g g g R

ρσµν ρσµν ρµ σν ρν σµ σµ ρν σν ρµ

ρν σµ ρµ σν

= + − − +

+ −
(3.128)

where C ρσµν  is the Weyl tensor defined in (3.128) (this quantity is discussed in more

detail in Chapter 4).  Eliminating the Riemann tensor from (3.127) using (3.129) gives

the result (the algebra is listed in Appendix B):

C C g C Cµλρσ ν
λρσ

µν ρσλκ
ρσλκ

⋅ ⋅ ⋅
⋅ − ≡1

4 0 , (3.129)

which is Pirani’s conformal identity (Ref. [118], p. 317),† and may be summarized by the

relation:

1
40 0Gauss BonnetS

C C g C C
g

λρσ ρσλκ
µλρσ ν µν ρσλκµν

δ
δ

⋅−
⋅ ⋅ ⋅≡ ⇒ − ≡ . (3.130)

Therefore, Pirani’s identity is the “field equation” originating from the Euler-Gauss-

Bonnet action using the standard variational procedure.

Continuing with (3.127), add and subtract 1
2 g R Rµν ρσ

ρσ  to obtain the result:

                                               
†
 note: this identity was only suggested by Pirani as an exercise and is not necessarily referred to as

“Pirani’s” identity in the literature (the derivation above gives a solution to it; an alternative solution is
derived by Parker and Christensen [117]).  But since Pirani has suggested the proof of this equation as an
exercise we will refer to it as Pirani’s conformal identify for lack of a better label.



57

( ) ( )
( )

1 1
4 4

1 1
4 4

0

2( ) 2 ,

R R g R R R g R R

R R g R R R R g R R

λρσ ρσλκ
µν µν µλρσ ν µν ρσλκ

ρ ρσ σ ρ ρσ
µ ρν µν ρσ ρ µσν µν ρσ

⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅

≡ − − + −

+ − + −
(3.131)

recalling that this field equation is an identity obtained from the Lanczos linear

combination:

1 2 3/ ( 4 ) 0g S S Sµνδ δ − + ≡ , (3.132)

using a standard variational procedure.  However, by substituting the field equations that

are obtained with respect to g µνδ  from (3.43), (3.44), and (3.45), (i.e., by assuming the

connection is in Christoffel form after the variation) then (3.132) (or equivalently (3.131)

) is no longer an identity.  A basic result is that (3.131) is satisfied (with the connection in

Christoffel form after variation) only if the following condition is met:

R R R Rσ ρ ρ
ρ µσν µ ρν= , (3.133)

which is not an identity as may by checked by substituting several of the nonphysical

solutions discussed in the preceding section.  It is emphasized that (3.43), (3.44), and

(3.45) were derived using the Palatini style variation of the quadratic curvature

Lagrangians, and then by imposing the Christoffel form afterward.  As a result, (3.133)

gives a necessary condition that the standard and “gauge gravity Palatini” procedures

give identical results.

The condition is also obtained by requiring the field equations resulting from 3S

of (3.41) to satisfy the same requirement, but in a weaker form.  To derive this result

consider the field equations resulting from the gauge gravity Palatini procedure applied to

3S  of (3.41) which are re-listed below:

3

1
4: 0

:
: 0 .

g R R g R R
S

R

ρ σ λ ρ λκ σ
µν σµλ ρν µν σ ρλκ

σ ρ
µν ρ σµν

δ
δ

δ
⋅ ⋅ ⋅ − =


Γ ∇ =

(3.134)

The corresponding standard variational results are given by (Appendix B):

1
4: ( ) 2 0g R R g R R Rλρσ ρσλκ ρ σ

µν µλρσ ν µν ρσλκ σ ρ µ νδ ⋅ ⋅
⋅ ⋅ ⋅ ⋅− + ∇ ∇ = , (3.135)

which is the field equation considered by Eddington (this was noted in Ref. [37]).  By

inspection it is clear that a sufficient condition for (3.135) to be satisfied is given by both

field equations of (3.134).  In fact, since the Pavelle-Thompson solution (3.73) satisfies

both field equations of (3.134), the field equations resulting from the “standard”
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variational procedure also admit a nonphysical solution.  In fact, there could be even

more solutions to (3.135) than merely those of (3.134) alone.  For example, there might

be cases where 0Rρ σ
ρ µ ν

⋅
⋅∇ ≠ , but 0Rρ σ

σ ρ µ ν
⋅

⋅∇ ∇ = , is satisfied.  However, if (3.135) is

required to vanish using only the g µνδ  field equation of (3.134), then it is

straightforward to show that the vanishing of the second term implies that the auxiliary

condition (3.133) is satisfied for a restricted class of spacetimes.  To see this first note

that the second term of (3.135) may be written as (using the Bianchi identity (3.67)):

( ) ( )R R Rρ
σ ρ µκν σ κ µν ν µκ∇ ∇ ≡ ∇ ∇ − ∇ . (3.136)

Raising the κ σ→  index gives

( )R R Rρ σ σ σ
σ ρ µ ν σ µν σ ν µ⋅∇ ∇ ≡ ∇ ∇ − ∇ ∇ , (3.137)

and note also for later reference that (this is equation (3.70)):

1
2( )g R R R R R Rµν ρ ν ν ν

ρ µκν ν κ κ ν κ ν κ κ∇ = ∇ ≡ ∇ − ∇ ⇒ ∇ ≡ ∇ . (3.138)

But since

( )

,

R R R R R

R R R R

σ ρ σ σ ρ
σ ν ν σ µ µ ρσν ρ µσν

ρ σ ρ
µ ρν ρ µσν

∇ ∇ − ∇ ∇ = −

= −
(3.139)

the R σ
σ ν µ∇ ∇  term on the RHS of (3.137) is expressed using (3.139):

R R R R R Rσ ρ σ ρ σ
σ ν µ µ ρν ρ µσν ν σ µ∇ ∇ ≡ − + ∇ ∇ , (3.140)

and after using (3.138) this term becomes

1
2R R R R R Rσ ρ σ ρ

σ ν µ µ ρν ρ µσν µ ν∇ ∇ ≡ − + ∇ ∇ . (3.141)

Finally, substituting (3.141) into (3.137), the final result is obtained:

2 1
2( )R R R R R R Rρ σ ρ σ ρ

σ ρ µ ν µν µ ρν ρ µσν µ ν⋅∇ ∇ ≡ ∇ − − − ∇ ∇ . (3.142)

Therefore, the field equation originating from the standard variational procedure may be

expressed in the equivalent form:

2

1
4( ) 2( )

2 0 .

R R g R R R R R R

R R

λρσ ρσλκ ρ σ ρ
µλρσ ν µν ρσλκ µ ρν ρ µσν

µν µ ν

⋅
⋅ ⋅ ⋅ − − −

+ ∇ − ∇ ∇ =
(3.143)

It is worthwhile to pause for a moment to summarize the field equations obtained using

the standard and “gauge gravity” Palatini variational methods.  The quotation marks on

“Palatini” in the following listing emphasizes that these field equations are not “true”
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Palatini results, but follow by imposing the Christoffel form of the connection as

discussed earlier (the standard variational results listed below are derived in Appendix

B):

( )

( ){
1

2

1
4

1
4

: 0
"Palatini" :

: 0:

Standard: : ( ) 0 ,

g R R g R

g RS

g R R g R R g R

µν µν µν

σ µν
µν σ

µν µν µν µ ν µν

δ

δδ

δ

  − = 
 Γ ∇ =
 − − ∇ ∇ − ∇ =

(3.144)

2 2

2

21
2

1
4

1
4

1
4

: 0
" Palatini" :

: 0

: 2( ) 2
:

0
Standard:

2( )

0 ,

g R R g R R

R

g R R g R R R
S

R g R

R R g R R R R

g R

λ ρσ
µν µ λν µν ρσ

σ µν
µν σ

λ ρσ ρ
µν µ λν µν ρσ ρ ν µ

ρσ
µν µν ρ σ

ρσ
ρσ λν µν ρσ µ ν µν

µν

δ

δ

δ
δ

⋅

⋅ ⋅

  − = 
Γ ∇ = 


 − − ∇ ∇


+ ∇ + ∇ ∇ =
 − − ∇ ∇ + ∇
 + ∇ = 

⇒

(3.145)

3

1
4

1
4

1
4

: 0
"Palatini" :

: 0

: ( )
:

2 0
Standard:

( )

2( )

g R R g R R

R

g R R g R R
S

R

R R g R R

R R R R

ρ σ λ ρ λκ σ
µν σµλ ρν µν σ ρλκ

σ ρ
µν ρ σµν

λρσ ρσλκ
µν µλρσ ν µν ρσλκ

ρ σ
σ ρ µ ν

λρσ ρσλκ
µλρσ ν µν ρσλκ

ρ ρ σ
µ ρν ρσ µ ν µ

δ

δ

δ
δ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅

⋅
⋅ ⋅ ⋅

⋅ ⋅
⋅ ⋅

⋅
⋅ ⋅ ⋅

⋅ ⋅
⋅ ⋅ ⋅

 − =


Γ ∇ =
−

+ ∇ ∇ =

−

− − − ∇ ∇

⇒
22 0 .R Rν µν











 + ∇ = 

(3.146)

By inspection of the “standard” variation results for each case above, we see that the

Lanczos linear combination (3.47), eliminates terms like:

∇ ∇ ∇ ∇µ ν µν µνR g R R; ;2 2 . (3.147)

Returning to the discussion of the auxiliary condition, the point is that by

requiring only the g µνδ  field equation of (3.134) to vanish implies that (3.133) is

satisfied for a restricted class of spacetimes.  I.e., substituting the g µνδ  field equation of

(3.134) into (3.143) gives the result that

2 1
2( ) 0R R R R R Rρ σ ρ

µν µ ρν ρ µσν µ ν∇ − − − ∇ ∇ = , (3.148)
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but this condition admits additional solutions since it is just the condition that

Rρ σ
σ ρ µ ν⋅∇ ∇  vanish (from (3.142)).  However, a subset of (3.148) may be picked out from

the result obtained earlier using the Gauss-Bonnet variation that only the middle term of

the above equation vanish (i.e., (3.133)), which does not by itself imply that (3.148) is

satisfied (an example is given by the Pavelle-Thompson solution, (3.73), for which

0Rρ σ
σ ρ µ ν⋅∇ ∇ =  is satisfied but 0R R R Rρ σ ρ

µ ρν ρ µσν− =  is not).

It is of interest to substitute the non-physical solutions discussed in the previous

section into the auxiliary condition.  The results are summarized below by letting

X R R R Rρ ρσ
µν µ ρν ρµσν≡ − . (3.149)

The nonzero components in each case are thus given by

2 2
1 1 1 1

00 116 6
1 1

2
1 1 2

22 33 226

4 ( 3 ) 4 (3 5 )
;

( ) ( )
Pavelle-Thompson:

4 ( )
; sin

c c r c c r
X X

r c r r c r

c c r
X X X

r
θ

 + +
= − = − + +


+

= =

(3.150)

2
1

00 11 5
1

2
1 2

22 33 224

3
0 ;

2 ( )
Thompson:

3
; sin

4

c
X X

r c r

c
X X X

r
θ


= = +




= =

(3.151)

3
1 1 2

00 11 5 3
1 2

3
1 1 2 2

22 33 224

3 ( 2 )
0 ;

2 ( )
Ni:

3 ( 2 )
; sin

4

c c c r
X X

r c r c r

c c c r
X X X

r
θ

 −
= = − + +


− = − =

(3.152)

By inspection of these equations it is apparent that the Pavelle-Thompson and Thompson

solutions satisfy the 0X µν =  equations only if 1 0c = , which results in the Minkowski

line element.  However, requiring the Ni solution to satisfy 0X µν =  implies that 1 0c =

which is the Einstein universe solution (3.123) - and is not an Einstein space since the

Ricci tensor for the Einstein universe metric (3.123) is given by

2

0

2 ; ( , 1, 2, 3),
tt

i j i j

R

R c g i j

=
= ≡

(3.153)
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and the Ricci scalar is 26c .  Therefore, the Einstein universe solution is not eliminated as

a nonphysical solution to the gauge gravity field equations by the auxiliary condition

(3.149) (i.e., solutions that are not Einstein spaces).  In addition, the Weyl tensor for the

Einstein universe solution vanishes and therefore the space is conformally flat which is

discussed further in Chapter 5 for more general cases.  The origin of the Einstein universe

solution is clarified by noting that it provides one of three static cosmological models (the

de Sitter and Minkowski line elements give the other two; see e.g., Tolman [119]) and is

therefore a solution of the Einstein field equations with a nonzero cosmological constant,

λ , in a universe filled with matter and radiation (i.e., the stress energy tensor is nonzero):

41
2 8R g R g G cµν µν µν µνλ π −− + = Θ . (3.154)

The point is that it is not a solution to the Einstein free-field equations.  Some additional

insight on why this metric is not eliminated by (3.149) is obtained by expressing (3.149)

in terms of the Weyl tensor and the trace-free Ricci tensor, Pµν , which is defined by

1
4R g R Pµν µν µν= + . (3.155)

Eliminating the Ricci tensor using (3.155) and the Riemann tensor using the

decomposition given in (3.128), (3.149) may be expressed (Appendix B):

( )1 1
3 4

51 1
2 12 4

2

( ) ,

X R P P P P P P C

P P g R R C

ρ ρσ ρσ
µν µν µ ρν ρσ ρµσν

λ λ
λ µν µν µλν

= + − −

− + +
(3.156)

but the last two terms vanish since Pµν  and C ρ
µσν  are traceless giving:

( )1 1
3 42X R P P P P P P Cρ ρσ ρσ

µν µν µ ρν ρσ ρµσν= + − − . (3.157)

As a result, 0X µν =  does not imply that 0Pµν = , i.e., there are other solutions to

0X µν =  besides Einstein spaces.  The example is given by the Einstein universe solution

where

3 1
00 2 11 2 112 2

1 1
22 2 22 33 2 332 2

;

; .

P c P c g

P c g P c g

= − =

= =
(3.158)

For this solution the P Cρσ
ρµσν  term is zero as a result of the vanishing Weyl tensor.

Neither of the remaining two terms in (3.157) is zero, but their linear combination results

in 0X µν = .
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The term

P Cρσ
ρµσν , (3.159)

is closely related to an identity discussed by Thompson

[ ] 0R R σ
ρσ µν λ = , (3.160)

which has recently been discussed by Guilfoyle and Nolan [35].  Their analysis considers

the various Petrov types of spacetimes allowed by (3.160) according to a Segré

classification of the Ricci tensor (this classification was previously discussed by Petrov

[114] and also by Debney, Fairchild, and Siklos [44]).  But in fact, the condition (3.160)

says nothing more than, 0 0= , since the equation is an identity.  The similarity to (3.159)

is obtained by expressing (3.160) in terms of Pµν  using (3.155) and then eliminating the

Riemann tensor using the Weyl tensor using  (3.128).  The result is given by (Appendix

B):

[ ] 0C P σ
ρσ µν λ = , (3.161)

and not surprisingly, all of the solutions discussed above satisfy (3.161) since this

expression is an identity, but not every solution satisfies 0P Cρσ
ρµσν = .  It is of further

interest to note that the theory proposed by Fairchild [42] – which is given by the

simultaneous solution of (ζ  is a constant):

[ ]

0

0,

R R C

Y R

ρσ
µν ρµσν

σµν µ ν σ

ζ + =

≡ ∇ =
(3.162)

may be expressed using a term like (3.159).  Additional analysis on the equivalence

between solutions of this theory and Einstein’s theory were given by Debney, Fairchild,

and Siklos [44] showing that the only vacuum solutions of the theory are also those of

Einstein’s.

Finally, it is of interest to investigate other solution possibilities for 0X µν =  by

substituting the arbitrary spherically symmetric metric into the auxiliary condition.  The

differential equations that result in this case are given by (see Appendix B):
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2 2 2 2

2 2 2 2

2 2 2 2 2

2

: (2 )( ) ( ) ( 1) 0

: ( 2 )( ) ( ) ( 1) 0

: ( )( ) ( ) ( )( 1) 0

: sin 0 .

B
tt

B
rr

B

X r A B A A A B r A A B A e

X r A B A A A B rB A B B e

X r A B A A A B r A B A B e

X X

θθ

ϕϕ θθ θ

′ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ + − + + + − =
′ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ + − − + + − =
′ ′ ′′ ′ ′ ′ ′ ′ ′ ′− + − + + + − − =

=

(3.163)

Considering the linear combination / /tt rrX A X B′ ′+  gives the condition that

2( )[ ( )( ) 2 ]
0tt rrX X r A B r A B A A A B A B

A B A B

′ ′ ′ ′ ′′ ′ ′ ′ ′ ′+ − + − −+ = = −
′ ′ ′ ′

, (3.164)

and therefore either

0A B′ ′+ = , (3.165)

or

2( )( ) 2 0r A B A A A B A B′ ′ ′′ ′ ′ ′ ′ ′− + − − = . (3.166)

Considering first the A B= −  case and substituting into (3.163) shows that the following

differential equation must be satisfied for each component of the X µν :

2 2 22 ( 1) / 0BB B e r′′ ′− − − = . (3.167)

The differential equation (3.167) was discussed earlier in the analysis as the ( )( )− −  case

(see (3.125)) and results in the solution given by Kottler (3.119):

2 2 2 2 1 2 2 2
1 2 1 2(1 / ) (1 / )ds c r c r dt c r c r dr r d−= + + − + + − Ω , (3.168)

which is an Einstein space.  Another obvious solution to (3.166) is given by ..A const=

In this case, 0ttX =  and the rrX  and Xθθ  both give the following differential equation:

2and 0 : ( 1) / 0B
rrX X B e rθθ ′= − − = . (3.169)

The differential equation is simplified using the substitution, 1
2 lnB = − Λ , to give

2 2 0r ′Λ − Λ + = , (3.170)

which results in the Einstein universe solution:

2 2 2 1 2 2 2
2(1 )ds dt c r dr r d−= − + − Ω , (3.171)

as discussed earlier.  Finally, setting A B=  satisfies (3.163) but only when A and B are

both constant.
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Chapter  4   Conformal Gravity

As discussed earlier the quadratic curvature Lagrangians:
1
2

1
2

1
2

4 2
1

4
2

4
3 ,

S d q g R

S d q g R R

S d q g R R

ρσ
ρσ

ρ σ µν
σ µν ρ

⋅
⋅ ⋅

=

=

=

∫
∫
∫

(4.1)

and various linear combinations of them have been considered as possible generalizations

of Einstein’s theory based on local Lorentz invariance.  But other investigations based on

local scale invariance have been considered, i.e., by postulating invariance under the

conformal transformation:

‘ ( )g q gµν µνλ= 2 , (4.2)

where λ  is a locally varying scale factor, and q denotes general coordinates.  From a

more physical viewpoint, the motivation for considering a conformally invariant theory is

postulated from the transformation law of a length element:

ds ds ds→ =‘ λ . (4.3)

The idea is that physical phenomena should be independent of locally chosen units for

mass, length, time, etc.; i.e. the group of conformal transformations should be a

symmetry group of nature.  In fact, Maxwell’s theory of electromagnetism is conformally

invariant - as demonstrated by Cunningham and Batemann [120] (see also Fulton, et. al.

[121] and Wald [122], p. 448); although it should be obvious that every conformally

invariant theory would not necessarily be physical.

In the recent literature there have appeared several papers describing a theory of

gravitation based upon an action quadratic in the Weyl conformal tensor, C ⋅ σµν
ρ , which is

defined as the totally traceless contribution to the Riemann curvature tensor according to

the decomposition listed earlier in Chapter 3:

( )
( )

1
2

1
6 .

R C g R g R g R g R

g g g g R

ρσµν ρσµν ρµ σν ρν σµ σµ ρν σν ρµ

ρν σµ ρµ σν

= + − − +

+ −
(4.4)

Therefore, to base a theory on conformal invariance the following conformally invariant

combination has been considered for the action:



65

S d q g C C= I ⋅ ⋅
4

1
2

σµν
ρ

ρ
σ µν . (4.5)

The field equations originating from (4.5) by using a standard variational procedure have

recently been discussed by Mannheim and Kazanas (MK) [56, 57] from a strictly

classical viewpoint.  A spherically symmetric solution to these field equations that was

originally discussed by Riegert [123] has been reconsidered by MK who have suggested

that an apparent observational inconsistency with galactic rotation curves could be

accounted for by a theory originating from (4.5).

It is apparent from (4.5) (and (4.4)) that a consequence of basing a theory on

conformal invariance is that the action considered for the theory must be quadratic in the

curvature tensors.  Therefore, several features of the conformal analysis are shared by the

quadratic curvature Lagrangians discussed in the previous Chapter.  The purpose of this

Chapter is to emphasize this similarity and to show that a class of conformally flat

solutions to the gauge gravity field equations, namely those also satisfying Nordström’s

theory [34] are also shared by conformal gravity.  In addition, an investigation of a

spherically symmetric solution structure to the theory is presented – which is the solution

that has been recently advocated by Mannheim and Kazanas.

Conformal Transformations of the Curvature Tensors

To help motivate the proposed conformally invariant generalization of Einstein’s

theory we illustrate in this Section that none of (4.1) are invariant under (4.2).  But there

does exist a linear combination of S1 , S 2 , and S 3  that is invariant.  To begin, consider

the transformation of the connection under (4.2) (see also Eddington [5] - pp. 200-222;

Schouten [83] - pp. 133, 304):

‘ ‘ ( ‘ ‘ ‘ )

( ) .

Γ

Γ
µν
σ σκ

µ νκ ν κµ κ µν

µν
σ

ν
σ

µ µ
σ

ν
σκ

µν κ

∂ ∂ ∂

λ δ ∂ λ δ ∂ λ ∂ λ

= + −

= + + −−

1
2

1

g g g g

g g
(4.6)

Using the definition of the Riemann tensor:

R ρ ρ ρ ρ λ ρ λ
σµν µ σν ν σµ λµ σν λν σµ∂ ∂= Γ − Γ + Γ Γ − Γ Γ , (4.7)

and then (4.6), the transformation rule of R σµν
ρ  is thus calculated in powers of λ  (see

Appendix E):
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1

2 2

‘ [( ) ( ) ]

[( ) ( ) 2( )

2( ) ] .

R R g g

g g

g g

ρ ρ ρ ρ ρ
σµν σµν ν µ µ ν σ σµ ν σν µ

ρ ρ ρ ρ
ν σµ µ σν µ ν ν µ σ

ρ
σν µ σµ ν

λ δ δ λ λ

λ δ δ λ δ λ δ λ λ

λ λ λ

−

−

= + ∇ − ∇ ∇ + ∇ − ∇ ∇

+ − ∇ + ∇ − ∇ ∇

+ ∇ − ∇ ∇

(4.8)

Therefore, from (4.8) the transformation:

‘ ‘ ‘ ‘g g R R g g R Rκµ λν ρ σ κµ λν ρ σ
σµν ρκλ σµν ρκλ→ , (4.9)

of L from S 3  in (4.1) is given by

( ) ( )4 5

6 2 2 2 2

7 2 2 8 4

‘ ‘ ‘ ‘ 8

4 ( ) 2( ) ( ) 4

8 4( )( ) ( ) ( ) 24 ( ) ,

g g R R g g R R R

R R

κµ λν ρ σ κµ λν ρ σ ρσ
σµν ρκλ σµν ρκλ ρ σ

σ ρσ
ρ ρ σ

ρ σ
ρ σ

λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ λ λ λ

− −

−

− −

= + ∇ ∇

 + ∇ − ∇ ∇ − ∇ − ∇ ∇ 
 + ∇ ∇ ∇ ∇ − ∇ ∇ − ∇ 

(4.10)

illustrating that the action S 3  is not invariant under (4.2) unless λ  is a scalar constant.

Similarly, the Ricci tensor transforms as

( )1 2

2 2

‘

4 ( ) ,

R R R g

g

µν µν µν µν µ ν

µ ν µν

λ λ λ

λ λ λ λ

−

−

→ = − ∇ + ∇ ∇

 + ∇ ∇ − ∇ 
(4.11)

so that

( ) ( )4 5 2

6 2 2 2

7 2 2 8 4

‘ ‘ ‘ ‘

2 2

2 4 ( ) ( ) ( ) 2( )( ) 4( )

4 ( ) ( ) 4( )( ) 12 ( ) .

g g R R g g R R

g g R R R R

R R

κµ λν κµ λν
µν κλ µν κλ

κµ λν ρσ
µν κλ ρ σ

ρσ ρ σ
ρ σ ρ σ

ρ σ
ρ σ

λ λ λ λ λ

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

− −

−

− −

→

= − ∇ ∇ − ∇

 + ∇ ∇ − ∇ + ∇ ∇ ∇ ∇ + ∇ 
 + ∇ ∇ − ∇ ∇ ∇ ∇ + ∇ 

r (4.12)

We also find for the Ricci Scalar:

2 3 2‘ 6 ( )R R Rλ λ λ− −→ = − ∇ , (4.13)

and therefore

2 2 4 2 5 2 6 2 2‘ 12 ( ) 36 ( )R R R Rλ λ λ λ λ− − −→ = − ∇ + ∇ . (4.14)

As a result, S1  and S 2  are also eliminated as possible actions from which to base a

conformally invariant theory.

However, by substituting the transformation rules derived above for R σµν
ρ , Rρσ ,

R into (4.4) along with (4.2), the definition of the Weyl tensor is thus viewed as the linear

combination that eliminates all terms involving derivatives on λ .  Hence, to construct a
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theory based on conformal invariance, the Weyl tensor is taken as the starting point given

that from L of (4.5):

g g g C C g g g C C g g g C C
1
2

1
2

1
2κµ λν

σµν
ρ

ρκλ
σ κµ λν

σµν
ρ

ρκλ
σ κµ λν

σµν
ρ

ρκλ
σ→ =‘ ‘ ‘ ‘ ‘ , (4.15)

Note also that the combination:

g g g g g g g g g
1
2

1
2

1
2κµ λν κµ λν κµ λν→ =‘ ‘ ‘ , (4.16)

is itself conformally invariant.

Field Equations

The field equations considered in the literature on conformal gravity (originating

from (4.5)) are derived with respect to a standard variational procedure.  To consider this

variation first express C Cσµν
ρ

ρ
σ µν

⋅ ⋅  in terms of the Ricci tensor and Ricci scalar by solving

for the Weyl tensor from (4.4).  The result is given by (Appendix E):

C C R R R R Rσµν
ρ

ρ
σ µν

ρσ
ρσ

σµν
ρ

ρ
σ µν

⋅ ⋅ ⋅ ⋅= − −2 1
3

23 8 , (4.17)

so that (4.5) becomes:

( )1
24 21

32 0
S

d q g R R R R R
g g

ρσ ρ σ µν
ρσ σµν ρ

µν µν

δ δ
δ δ ⋅ ⋅= − − =∫ . (4.18)

However, before taking this variation, the linear combination above can be simplified

further using the Gauss-Bonnet linear combination to eliminate R Rσµν
ρ

ρ
σ µν

⋅ ⋅  given that:

2 4R R R R R R Rλκωη ρσ µν ρσ ρ σ µν
ρσµν λκ ωη ρσ σ µν ρε ε ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= − + . (4.19)

Substituting into (4.18) gives

( )1
24 2 1

2
1
3

2
0

S
d q g R R R R R

g g
ρσ λκωη ρσ µν

ρσ ρσµν λκ ωη
µν µν

δ δ ε ε
δ δ ⋅ ⋅ ⋅ ⋅= − − + =∫ , (4.20)

but since the last term in (4.20) is the Euler topological invariant:

1
24 0d q g R R

g
λκωη ρσ µν

ρσµν λκ ωη
µν

δ ε ε
δ ⋅ ⋅ ≡∫ , (4.21)

we may consider the following variation in place of (4.18):

( )1 1
2 24 4 21

3
2

d q g C C d q g R R R
g g

ρ σ µν ρσ
σ µν ρ ρσ

µν µν

δ δ
δ δ⋅ ⋅ = − −∫ ∫ . (4.22)
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The field equations resulting from (4.22) using the standard variational procedure are

given by (Appendix E):

( ) ( )
( )2

2 1 1
3 4 4

1
3

1
3

: 0 2

2 2

.

g R R g R R R g R R

R g R R R

g R R

µν σ ρ ρσ
µν µν ρ µσν µν ρσ

ρ σ ρ
µν µν ρ ν µ ρ σ µ ν

ρσ
µν ρ σ µ ν

δ

⋅

= − − −

+ ∇ − − ∇ ∇ − ∇ ∇

+ ∇ ∇ + ∇ ∇

(4.23)

and then using the Bianchi identities (4.23) is equivalent to the simpler form (see also

Tsantilis, et. al. [124] for identical results):

( ) ( )
( )2

2 1 1
3 4 4

1 1
6 3

0 2

.

W R R g R R R g R R

R g R R

ρ σ ρσ
µν µν µν σ µρν µν ρσ

µν µν µ ν

= = − − −

− ∇ − + ∇ ∇
(4.24)

However, these field equations differ from the those presented by MK [56]:

( ) ( )
( ) ( )2

2 1 1
3 4 4

1 2
6 3

0 2

.

R R g R R R g R R

R g R R R R

ρ ρσ
µν µν µ ρν µν ρσ

ρ ρ
µν µν ρ µ ν ν µ µ ν

= − − −

+ ∇ − − ∇ ∇ + ∇ − ∇ ∇
(4.25)

Removing covariant derivatives on the MK result for comparison to (4.24), (4.25) is

equivalent to

( ) ( )
( ) ( )2

2 1 1
3 4 4

1 1
6 3

0 2

2 .

R R g R R R g R R

R g R R R R R R

ρ ρσ
µν µν µ ρν µν ρσ

ρ ρ σ
µν µν µ ρν σ ρµν µ ν

= − − −

+ ∇ − − − − ∇ ∇
(4.26)

Although (4.26) is traceless, the field equations are incorrect.  To gain insight on this

problem note that (4.24) and (4.26) would be equivalent provided that the auxiliary

condition (3.133) is satisfied if

R R R Rσ ρ ρ
ρ µσν µ ρν= .

We also note that the spherically symmetric solution discussed by MK (discussed in

detail in the following section) satisfies (4.24) but does not satisfy their own field

equations.  However, we view this as a relatively minor problem which probably

indicates that the field equations (4.26) were derived by MK using a “gauge gravity” type

Palatini procedure.  Furthermore, Pawlowski and Raczka [125] have published field

equations originating from (4.5):

( ) ( )
( )2

2 1 1
3 4 4

1 1
3 3

0 2

,

R R g R R R g R R

R g R R

ρ σ ρσ
µν µν σ µρν µν ρσ

µν µν µ ν

= − − −

− ∇ − + ∇ ∇
(4.27)
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that differ from (4.24) by the term, 2 1
3( )g Rµν∇ , which should be 2 1

6( )g Rµν∇ , as given

in (4.24).  The result of this incorrect factor of 2 is that (4.27) is no longer traceless, as

must be required by conformal invariance.

A Spherically Symmetric Solution

A spherically symmetric solution to the field equations (4.24) has been found by

Riegert [123] and expressed by MK [56] in the form:

2 2 1 2 2 2

2

( ) ( )

(2 3 )
( ) 1 ,

ds B r dt B r dr r d

B r r kr
r

β βγ βγ γ

−= − − Ω
−= − − 3 + −

(4.28)

where β γ, , k  are 3 independent integration constants.  To simplify the analysis on (4.28)

we write ( )B r  in the form:

1 2
2 3 4( ) 1

k
B r k k r k r

r
= − − + − , (4.29)

where k1 , k2 , k3 , and k4  are now four arbitrary (and assumed) independent constants.

Substituting (4.29) into (4.24) gives the result (Appendix E):

( ) ( )
( ) ( )

( )

2 2 5
00 2 2 1 3 1 4 3 2

2 3 2
11 2 2 1 3 1 4 3 2

2 2
22 2 2 1 3

2
33 22

2 2 3 1 /3

2 3 /3 1

2 2 3 /3

sin ,

W k k k k k r k r k r k r

W k k k k r k r k r k r k

W k k k k r

W W θ

 = − + + − + − 
 = − − + + − + − 

= − − +

=

(4.30)

and therefore if the field equation (4.24) is satisfied, we obtain a quadratic equation in 1k ,

2k , and 3k  ( 4k  is therefore an arbitrary independent parameter):

2
2 2 1 32 3 0k k k k− + = . (4.31)

Solving (4.31), we find that

( )2 2

1
3

2

3

k k
k

k

−
= , (4.32)

which must hold for (4.29) to satisfy the field equations (4.24).  Using (4.32), (4.29) is

expressed:
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( )2 2 2
2 3 4

3

2
( ) 1

3

k k
B r k k r k r

k r

−
= − − + − , (4.33)

and then by comparison with (4.28) and (4.29) we identify:

2 3 43 ; ;k k k kβγ γ= = = . (4.34)

Substituting into (4.32) we then recover the form of the MK solution (4.28).  Note that

(4.31) could be used to eliminate 2k  or 3k  rather than 1k :

( )2 2

2 1 3 3
1

2
1 1 3

3

k k
k k k or k

k

−
= ± − = , (4.35)

and these substitutions give back exactly (4.28) - providing no new forms of the solution.

By inspection of (4.32) and (4.35) there will be several special cases of (4.28) to

consider (the labeling of these solutions will be explained in the following discussion):

Schwarzschild:

3 4 2 10 ( ) 1 /k k k B r k r= = = ⇒ = − , (4.36)

 “Pseudo - Signature” Solution 1:

( )3 4 2 10; 2 ( ) 1 /k k k B r k r= = = ⇒ = − + , (4.37)

No Label:

4 1 2 30 ( ) 1 /k k B r k r k k r= = ⇒ = − − + , (4.38)

Conformally Flat 1:

1 2 30 ( 0) ( ) 1k k k B r k r= = = ⇒ = + , (4.39)

where (4.36) and (4.37) originate from the two solutions for k2  in (4.35), with k = 0 .

The fact that k k4 =  is arbitrary should be apparent from the condition that (4.24)

vanishes as given by (4.31) - irrespective of k.  This freedom gives three additional forms

corresponding to k ≠ 0 :

Schwarzschild - de Sitter:

2
3 2 4 1 40; 0 ( ) 1 /k k k B r k r k r= = ≠ ⇒ = − − , (4.40)

“Pseudo - Signature” Solution 2:

( )2
3 2 4 10; 2; 0 ( ) 1 /k k k B r k r k r= = ≠ ⇒ = − + + , (4.41)

Conformally Flat 2:
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2
1 2 3 40 ( ) 1k k B r k r k r= = ⇒ = + − . (4.42)

Schwarzschild and “Pseudo - Signature” Solutions

To understand these cases from a more general viewpoint begin with the

Schwarzschild and “Pseudo - Signature”  solutions.  We see by inspection of (4.29) that

the Schwarzschild solution follows when 2 3 4 0k k k= = → , and 2
1 2 /k MG c= .

However, a more general result is obtained by simply allowing:

1 2( ) 1 /B r k r k= − − . (4.43)

Substituting (4.43) into (4.24) we get

( ) ( )
( ) ( )
( )

5
00 2 2 1 2

3
11 2 2 1 2

2 2
22 2 2

2
33 22

2 2 1 /3

2 2 /3 1

2 2 sin /3

sin ,

W k k k r k r

W k k r k r k

W k k r

W W

θ

θ

= − − + −  
= − + −  
= −

=

(4.44)

which is satisfied if

k k k or k2 2 2 22 0 0 2− = ⇒ = =1 6 , (4.45)

in agreement with the first equation of (4.35) when k3 0= .  Hence, the k2 0=  (and

k = 0 ) case gives the Schwarzschild solution (4.36) with signature: { , , , }1 1 1 1− − − , while

the k2 2=  case gives

( )1( ) 1 /B r k r= − + , (4.46)

corresponding to (4.37):

( ) ( ) 12 2 2 2 2
1 11 / 1 /ds k r dt k r dr r d

−= − + + + − Ω . (4.47)

Equation (4.47) is not equivalent to the Schwarzschild case - noting the unusual signature

combination of negative signs in front of two spatial and the time differentials, while only

one spatial term has a positive coefficient.  To see that there is no correspondence with

the Schwarzschild solution note that (4.47) is not a solution to the Einstein-Hilbert field

equations since:

2 2
22 33 220; 2 , sin ; and 4 / ( 0)R R R R R rµν θ≠ = = = − ≠ . (4.48)
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Since k is arbitrary we obtain (4.41) as the complementary “pseudo-signature” solution

#2 with k ≠ 0 .  The special case (4.38) follows from (4.28) when k = 0 .

Conformally Flat Solutions

There are other nontrivial solutions to the conformal field equations (4.24).  To

see this note that the vanishing of the Weyl tensor implies that the metric may be

expressed:

20 ( )C g qρ
σµν µν µνλ η= ⇒ = , (4.49)

where µνη  is the Minkowski form of the metric.  In such cases, the 0Wµν =  field

equations are satisfied identically, which is not necessarily obvious.  The reason is that

although a function (e.g. the Weyl tensor) could be made to vanish, the same does not

necessarily hold for its derivatives (i.e., the field equations Wµν ).  However, the

important thing to realize is that the field equations are conformally invariant under the

transformation of (4.2), i.e., ‘ ( )g q gµν µνλ= 2 .  Therefore, by considering,

2( )g qµν µνλ η= , as a transformation of this form, the scalar factor 2 ( )qλ  passes through

the 0Wµν =  field equations leaving derivatives on µνη .  As a result, 0 0C Wρ
σµν µν= ⇒ ≡ ,

and therefore solutions satisfying Nordström’s theory (recalling that 0; 0C Rρ
σµν = = )

and those satisfying 0C ρ
σµν =  will be solutions to 0Wµν = .  A consequence is that the

Pavelle-Thompson solution:

( ) ( )2 22 2 2 2 2
1 11 / 1 /ds k r dt k r dr r d

− −= + − + − Ω , (4.50)

is a solution to both the gauge gravity and conformal gravity field equations since

Nordström’s theory is implied by the ( )( )+ +  case discussed earlier in Chapter 3.  The

origin of the conformally flat solutions “one” and “two” noted above stem from

0C ρ
σµν = .  These cases were derived earlier in Chapter 3 (see (3.114)) but do not satisfy

the gauge gravity equations.  As a result, the conformally invariant theory of gravitation

also has nonphysical solutions - recalling that (4.50) gives 1/6 of the observed value for

perihelion precession and in the opposite direction (Pirani [95]).  Another characteristic

of such spaces is that there will be no deflection of light rays.  To see this note that the

null-cone is invariant under (4.2), i.e.
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ds ds2 20 0= → =‘ . (4.51)

Therefore, for the special case of a conformally flat space, the null geodesics of gµν  will

be identical to the null geodesics of ηµν  and no deflection of light rays will occur.

However, the fact that (4.24) has nonphysical solutions (in addition to possibly physical

ones) does not necessarily rule out this formulation as a nonviable physical theory.  For

example, in classical electromagnetism one obtains both advanced and retarded potential

solutions.  But advanced potential solutions are considered nonphysical and therefore

discarded; the point is that nonphysical solutions to a theory do not necessarily mean that

the theory is incorrect.



74

Chapter 5   Schwarzschild Dynamics

In the second part of the thesis the orbital dynamics of point particles in the

Schwarzschild and Reissner-Nordström spacetimes are investigated using techniques

from dynamical systems theory.  The motivation for considering this analysis is to gain

additional insight into the physical and analytic structure of the solutions, particularly

with regard to the stability properties of the orbits.  From the viewpoint of a bifurcation

analysis the Schwarzschild solution is singled out in one respect - the solution has the

lowest dimensional parameter space of all other black hole solutions of Einstein’s field

equations and is therefore the simplest to analyze.  Therefore, although there are some

new qualitative results to report on the stability properties and classification of the

Schwarzschild orbits, the analysis presented in this Chapter will serve mainly as an

introduction to the Reissner-Nordström bifurcation problem which is considered in

Chapter 6.

In the first sub-section entitled Orbital Equations, the equations of motion for test

particle orbits in the Schwarzschild geometry are derived.  The goal in this section is to

not only outline and introduce the analysis that will be applied in later sections, but to

“tailor” the derivation towards a discussion emphasizing the bifurcation results.  In the

following sub-section entitled Fixed Points and Linear Stability Analysis, the phase-plane

analysis is developed and then applied to obtain the well-known value of periastron

precession.  In the sub-section entitled Phase Diagrams, the Schwarzschild orbital

dynamics are analyzed based on the level curves of the dynamical state space.  The

standard results are discussed but also an alternative viewpoint for analyzing the

dynamics is presented based upon the separatrix structure of the phase-plane.  In this

approach, the critical relationship that occurs between energy and angular momentum at

the unstable orbital radius (i.e. the separatrix) summarizes the range of physically

possible orbits, and then a saddle-center bifurcation is identified while a dimensionless

parameter involving the angular momentum is varied.

Although the dynamical structure (i.e. the effective potential) is invariant between

the coordinate and proper time reference frames, the phase diagrams in each reference

frame are not identical.  This is due to the existence of an additional phase-plane fixed
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point that appears in the coordinate reference frame at the event horizon.  This fixed point

is obviously coordinate dependent, but must exist to explain the apparent “slowing down”

of objects (and redshift of signals) approaching the horizon boundary as seen by an

observer in the coordinate reference frame.

For comparison to the relativistic case, the corresponding Newtonian phase-plane

results are discussed in Appendix F.  Finally, the phase-plane analysis is applied to the

kinematics of light rays in the Schwarzschild spacetime.  The standard results are

discussed and then compared with the timelike phase-plane results.  The added

significance of the photon orbits (in the phase-plane context) is that the equilibrium

points of the differential equations exhibit a transcritical bifurcation, i.e. a an exchange of

stability occurs at these parameter values.

Orbital Equations

The equations of motion for a point mass with rest mass, m0 , orbiting a

Schwarzschild black hole with mass, M (assuming for simplicity that m M0 << ) originate

from the line element (derived in Chapter 2):

2 2 2 1 2 2 2

2 2 2 2

1 /

sin .

s

ds c dt dr r d

r r

d d dθ θ ϕ

−= Λ − Λ − Ω
Λ = −

Ω = +

(5.1)

Equation (5.1) is expressed using spherical coordinates and rs  is the Schwarzschild

radius obtained earlier in (2.80):

r MG cs = 2 2/ . (5.2)

The Lagrangian is a constant of the motion:

( )2 21 1
2 2/ ;L m ds d m c proper timeτ τ0 0= = ≡ , (5.3)

and if the orbit is confined to the equatorial plane ( / 2θ π= ), L̂  takes the explicit form

( & /t dt d= τ , etc.):

2 1 2 2 21ˆ2 t r rL ϕ−= = Λ − Λ −&

&& . (5.4)

From the Euler-Lagrange equations there are two additional constants of motion ((5.4) is

trivial; (5.5) and (5.6) are first integrals):
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2
0

ˆ ˆ; /E t E E m c= Λ ≡& , (5.5)

2 2
0 0

ˆ/ 0 / ; /L L J m r J J m c∂ ∂ϕ ∂ ∂ϕ ϕ= ⇒ = = =& & . (5.6)

Physically, Ê  is the energy required for an observer at infinity to place m0  in orbit about

M (total energy per unit rest energy).  Ĵ  is the angular momentum of the system (per unit

rest energy) and since this is constant, there will be no precession of the equatorial plane.

The physical interpretation of Ê  and the value of rs  given by (5.2) are checked in

the Newtonian limit which was also considered in Chapter 2.  A slightly simpler

approach for obtaining these limits is given by assuming only radial motion to obtain:

2 2 2 2 2 1 2ds c d c dt drτ −= = Λ − Λ , (5.7)

and then factoring c dt2 2  leads to

2 2 1 2 2( / )d dt v cτ −= Λ − Λ . (5.8)

Solving this equation for dt d t/ &τ = , and then assuming the mass is at rest (i.e., 0v → ):

& ( / )t r rs= = −− −Λ
1
2

1
21 . (5.9)

Finally, substituting for &t  into (5.5) (in the limit of small rs ) gives the result

1
2ˆ (1 / ) 1 / 2s sE r r r r= − ≈ − . (5.10)

Comparing (5.10) with the Newtonian potential energy, the interpretation of Ê  is in

agreement with the Newtonian result - provided that rs  is given by (5.2).

Continuing with the equations of motion, use (5.5) and (5.6) to eliminate &t  and &ϕ

from (5.4) and then re-arranging algebraically gives the result:

( )22 2 2 2 2 2ˆ ˆ/ / (1 / )r c dr ds E c J r− + Λ= =& . (5.11)

Noting the functional dependence of r on the equatorial angle (i.e. r r= ⇒( )ϕ

& ( / ) &r dr d= ϕ ϕ ), (5.11) is further expressed in terms of the constant Ĵ .  Furthermore, the

degree of this equation (in r) is reduced by making the change of variable: /sx r r≡ .

Simplifying algebraically then gives the result:

( )2 2 2ˆ/ )ˆ2 ( effdx d E Vϕ σ −= , (5.12)

where σ  defines the dimensionless parameter:
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( )2
1
2

ˆ/sr cJσ = , (5.13)

and the effective potential is given by:

2 21 / 2ˆ ( )eff xV σ+ Λ= . (5.14)

Differentiating (5.12) with respect to ϕ  then gives the standard second order equation in

dimensionless form:

2 2 23
2/d x d x xϕ σ+ = + . (5.15)

Fixed Points and Linear Stability Analysis

A phase-plane and bifurcation analysis of (5.15) is considered by first converting

this second order, nonlinear, inhomogeneous, differential equation into two first order

equations by first introducing a new variable, / ( )y dx d xϕ ′= ≡ .  For a general

spherically symmetric metric of the form given by (5.1) (with Λ  unspecified) the phase-

plane equations are given by

21
2

( , )

( , ) [ ( )( / )] ,

x f x y y

y g x y x x d dxσ
′ = =
′ = = − Λ + + Λ

(5.16)

which shows that if Λ  is a polynomial of degree n, there will be 1n +  fixed points, i.e.

equilibrium solutions of (5.17) obtained from ′ = ′ =x y 0  for x and y.  For the

Schwarzschild solution, (5.15) reduces to

23
2 .

x y

y x x σ
′ =
′ = − +

(5.17)

and the fixed points, *x
r

, are given by (denoting ( , )x x y=r

):

r r

x x1 2
1 1 6

3
1 1 6

30 0* *, ,;= �� �� = �� ��+ − − −σ σ . (5.18)

Alternatively, by expressing y in terms of x using (5.12):

′ = = ± − + − =x y E x x[ $ ( )( )] /2 2 1 02 2 1 2σ σ , (5.19)

and then solving simultaneously: ′ = ′ =x y 0 , for $E2  and x rather than x and y, the

corresponding energies at each fixed point are expressed solely in terms of σ :

$ ; $

[ ( ) ]
[( ) ]

[ ( ) ]
[( ) ]

/

/

/

/E E1
2

2
21 12 1 4 1 6

1 6 1
2 1 4 1 6

1 6 1

1 2

1 2 3

1 2

1 2 3− = − =− − −
− −

− + − −
− −

σ σ σ
σ

σ σ σ
σ , (5.20)
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respectively.  Therefore, solving simultaneously for $E2  and x gives additional

information on the dynamics compared to the standard technique of obtaining only x and

y (e.g., Strogatz [126]; Tabor [127]).  Furthermore, the phase-plane equations analogous

to (5.17) that result from the proper and coordinate time analysis considered in a later

section (and also in the Newtonian case) give non-physical roots when solving only for x

and y (i.e. do not correspond to the effective potential extrema).  However, these

additional roots are eliminated by solving for $E2  and x as illustrated above and as

discussed below.

A general classification of the fixed points (5.18) is obtained from a linear

stability analysis (e.g., [128]).  Essentially, this amounts to series expanding (5.17) about

an arbitrary fixed point in the small parameters: δx x x= − *  and δ y y y= − *.

Dropping second order terms, the resulting first order linear equations are expressed in

matrix form:

δ
δ

∂ ∂
∂ ∂

δ
δ

δ
δ

δ
′
′

�
��
�
�� ≈
�
��

�
��

�
��
�
�� =

−
�
��

�
��

�
��
�
�� ≡

= =
=

x

y

f f

g g

x

y x

x

y
A x

x y

x y
x x x x

x x
r r

r r

r r

r

* *

*

0 1

3 1 0
. (5.21)

The general solution of (5.21) is therefore an exponential whose stability at each fixed

point is analyzed by classifying the eigenvalues of the matrix A.  Solving the eigenvalue

problem, we find roots to

A I− =λ 0 , (5.22)

but since A is 2 2× , the characteristic polynomial may be expressed:

λ τ λ2 0− + =∆ , (5.23)

where τ ≡ trace A , and ∆ ≡ determinant A .  The eigenvalues are roots to (5.23):

λ τ τ= ± −1
2

2 4( )∆ , (5.24)

and accordingly, the exponential solutions to (5.21) are classified by the various regions

of Figure 1 (dots mark the location of the fixed points given in (5.18)).

Briefly, region I corresponds to a “saddle-node” fixed point, whose stable and

unstable manifolds (corresponding to positive and negative (real) eigenvalues,

respectively) are given by the eigenvectors of (5.21).  Region II represents an “unstable

node,” i.e. 2 positive real eigenvalues with τ 2 4 0− >∆ ; region III gives solutions having



79

one (positive) real and one complex eigenvalue (“unstable spirals”), while regions II ′

and III ′  are the complimentary stable solutions of region’s II, and III, respectively.  The

“boundary” cases are given by τ 2 4= ∆  (degenerate nodes and lines of fixed points) and

τ = 0 , ∆ > 0  are “centers” giving periodic orbits in the phase-plane.  A complete

discussion will not be given on each case since it is only region I and the boundary

separating regions II and II ′  that are relevant for the analysis considered here (see

Strogatz [126] for additional discussion and examples).

Figure 1  Eigenvalue Classification

By evaluating the matrix A in (5.21) at each fixed point of (5.18), the following

classifications are obtained:

*
1

*
2

" "

" "

0 1
0; 1 6

1 6 0

0 1
0; 1 6 ,

1 6 0

x
Saddle Node

x
Center

A

A

τ σ
σ

τ σ
σ

 
= ⇒ = ∆ = − −  − 

 
= ⇒ = ∆ = + −  − − 

r

r

144424443

144424443

(5.25)

corresponding to a “saddle” and “center-node” fixed point, respectively (see Figure 1 for

the placement of these points).  As previously discussed, the linear stability analysis gives

an exponential solution about each fixed point with the phase-plane trajectories shown in

Figure 2 (the directions follow from (5.17) and are indicated by arrows).

τ 2 4= ∆

∆

τ

I

II

III

II ′

III ′r

x 2
*

r

x1
*
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Physically, trajectories about the center-node fixed point correspond to precessing

elliptical orbits (and will be used to obtain the value for periastron precession).  However,

the saddle-node that appears is not predicted by Newtonian theory, but is due to an

unstable orbital radius originating from the r −3  term of the effective potential (5.14).  As

a result of this instability, there are orbital effects not present in the Newtonian theory

which have been summarized in the literature (see e.g., MTW [93], p. 637).  An

interesting consequence of the phase-plane approach to this analysis is that this result

comes out very quickly in the analysis as a secondary fixed point.

Figure 2  Linear Stability Phase-Plane

Periastron Precession

The periastron shift, ∆ϕ , of planetary orbits has provided one of the earliest and

most important experimental test of Einstein’s theory (see Figure 3).  The lowest-order

relativistic contribution to the periastron precession was first calculated by Einstein [129]

to explain the anomalous perihelion shift of Mercury (the modern experimental value is

approximately 43′′≈  per century). In binary systems the periastron shift is due to both

Newtonian and relativistic contributions.  The most important Newtonian contributions

are due to gravitational interactions with other bodies and the quadruple moment induced

by rotation and tides.  For example, the planet Mercury has an observed total periastron

shift of approximately 574 arc seconds per century but 532′′  are due to other Newtonian

r
x2

* r
x1

*

y dx d= / ϕ

x u r rs= = /
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contributions.  For a detailed discussion of Newtonian effects on the periastron shift see

[130].

Figure 3  Schematic of Periastron Precession

More recent interest in periastron calculations is motivated by observations of

relativistic binary systems (e.g., [131]) and has remained an active area of investigation.

For example, Esteban and Diaz [132] have discussed higher order relativistic

contributions to the periastron shift due to spin-orbit and spin-spin interactions.  Damour

and Schafer [133] have considered applications of these higher order contributions to

binary pulsar systems.  Such calculations are further motivated by suggestions [134] that

neutron-star–black-hole and radio-pulsar–black-hole binaries could be detected in the

near future, and therefore observational evidence might soon be available to cross check

these astrophysical models.

The purpose of this section is to illustrate the phase-plane method as a

calculational tool to obtain the standard periastron precession value.  These results are

then later generalized to a study of periastron precession in the Reissner-Nordström

spacetime in Chapter 6.  As a brief review, in the standard textbook presentation of this

calculation [93] there are essentially two approaches taken to calculate its value from the

nonlinear equations of motion:

(A) approximate an elliptic integral,

∆ϕ
periastronr

apastronr
M

m0
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(B) a perturbative solution to the general relativistic equations.

Although (A) and (B) are the most common methods appearing in the literature, other

approximation methods do exist, e.g. Wald [93] considers small oscillations about an

elliptical orbit; Misner, Thorne, and Wheeler (MTW) [93] consider nearly circular orbits

and then later using the PPN formalism.

Here we simply solve (5.21) about 
r

x2
* .  The system is rewritten here as:

δ δ δ ω δ ω σ′ = ′ = − = −x y y x, ; ( ) /2 1 41 6 . (5.26)

The solutions are centers corresponding to precessing elliptical orbits (see Figure 2):

δ ϕ ωϕ ωϕ
δ ϕ ω ωϕ ω ωϕ

x A B

y A B

( ) cos sin

( ) sin cos ,

= +
= − +

(5.27)

with A and B arbitrary constants.  Choosing initial conditions at the position of periastron:

δ δ ϕx u y du d( ) ; ( ) ( ) /0 0 0 00= = = , (5.28)

(5.27) becomes

δ ϕ ϕ ωϕ
δ ϕ ϕ ω ωϕ

x u u

y u u

( ) ( ) cos

( ) ( ) sin ,

= =
= ′ = −

0

0

(5.29)

giving a typical “center” solution about the fixed point 
r

x2
* .

As previously discussed, in “physical” space the orbit of m0  about M does not

close.  However, the phase-plane trajectory given by (5.29) must close after a single orbit

since the system is conservative (ignoring radiative effects).  Therefore, the period of a

single orbit, Φ , is defined from the period of the phase space trajectory given by (5.29):

ω πΦ = 2 . (5.30)

Solving for Φ , and then substituting for ω  in the limit of small σ  gives the result:

Φ = ≈ +−2 2 31πω π πσ . (5.31)

The Newtonian calculation gives only the first term, Φ = 2π , as expected.  However, as

seen from (5.31), the Schwarzschild solution gives the correction:

( )2ˆ3 6 /GM Jϕ πσ π∆ = = , (5.32)

which is the standard value expressed in the “geometrized” system of units (i.e.,

1G c= = , 2sr M= ; see e.g., Shutz [1], p. 198) with m0  taken as unity (see (5.36) and

(5.37) for order of magnitude estimates of σ ).



83

Phase Diagrams

In the preceding Section a linear stability analysis has been considered about each

fixed point.  However, this procedure gives only “local” information on the general

relativistic orbits, and is in fact one shortcoming of the linear stability analysis.

Therefore, no correspondence can be made with parabolic, hyperbolic, or orbits near the

black hole event horizon using Figure 2 alone.  However, since the equations of motion

are integrable as a result of the constants of motion that exist (i.e., (5.4), (5.5), and (5.6)),

a complete phase diagram may be constructed and then several “global” features of these

orbits may be deduced as a result.  In addition, other qualitative features of the

Schwarzschild orbital dynamics may be derived from this diagram (Figure 4) as

discussed below.  (Note: since the equations are integrable no chaos exists here.

However, if additional degrees of freedom are allowed the possibility for chaos exists;

see e.g. [135] for a discussion of chaos in relativistic orbital dynamics).

To obtain the complete phase-plane diagram, consider the “level curves” found by

taking the ratio of ′x  and ′y  from (5.17), and then integrating to get a conserved

quantity:

dy dx x x y y x x x/ ( ) /= − + ⇒ = + − +3
2

2 2 3 2 2σ β σ . (5.33)

The value of the constant β  is easily found by comparison with (5.12):

β σ= 2 −$E 2 13 8 , (5.34)

so that (5.33) may be alternatively expressed:

$ /E y x x x2 2 2 31 2− = + − −2 7 σ . (5.35)

In Figure 4, the level curves corresponding to different values of $E  in (5.35) are shown

with the effective potential (5.14) (with σ = 1
9 ).  These curves correspond to solutions of

(5.17) for various energies and initial conditions, and should be compared with the

approximate solutions given by the linear stability analysis of Figure 2.  The vertical

dotted line at r rs / = 1, labels the black hole event horizon.
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Veff
2 1−

x r rs= /

event horizon

event horizon

x2* x1*

-0.2

0.2

0.4 0.6 0.8 1-0.2

x r rs= /

y dx
d= ϕ

elliptical

hyperbolic
parabolic

separatrix

separatrix

x = 0

Figure 4  Complete Phase-Plane for σ = 1 9/

The value of σ  used in (5.35) has been greatly exaggerated to better illustrate the

qualitative features of the exact phase-plane.  For a more realistic value of σ  consider

Mercury’s orbit - taking the value of ∆ϕ  over a single orbit and then using (5.32):

83 0.104 5.3 10πσ σ −′′≈ ⇒ ≈ × , (5.36)

or for the binary pulsar system discovered by Hulse and Taylor [131]:

3 4 7 4 10 3πσ σ≈ ° ⇒ ≈ × −. . (5.37)

To check that σ = 1
9  is a reasonable value in Figure 4, an upper bound may be placed on

σ  for the existence of stable or unstable orbits from either phase-plane fixed point.  By

inspection of (5.18), if σ > 1
6  then no (real) fixed points exist for a given value of energy

and angular momentum.  To trace the physical origin of this value and to understand the
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topological structure of Figure 4 from a more general viewpoint, note that when y = 0  in

(5.35) the effective potential is obtained:

$ ( ) /V x x xeff
2 2 31 2− = − −σ . (5.38)

The locations of the stable and unstable orbits are found as usual by solving: ∂ x effV$ = 0

for x, which gives identically (5.18).  From (5.18) no extrema exist for σ > 1
6 ,

establishing an upper bound on σ  for stable or unstable orbits.  For σ = 1
6 , stable orbits

(smallest value of) and unstable orbits (largest value of) coincide at

r rs1 2 3, = , (5.39)

providing an inflection point in the plot of $Veff
2 1−  vs x as shown in Figure 5 for several

values of σ † (note: the standard presentations of this diagram are commonly displayed

as: $Veff
2 1−  vs 1/x; see e.g. Wald, Ohanian and Ruffini, or MTW [93] for an alternative

parametrization using rs  and Ĵ ).  But another critical value of σ  occurs when $E2 1= .

To see this, solve $E1
2 1 0− =  using (5.20) to obtain σ = 1

8 , as displayed in Figure 5.

Therefore, qualitatively distinct orbits exist based upon the following values of σ :

0 1
8

1
8

1
8

1
6

1
6

1
6< < = < < = >σ σ σ σ σ; ; ; ; . (5.40)

For σ > 1
6  there is insufficient angular momentum for m0  to sustain an orbit, therefore

the mass simply falls into M and correspondingly, $Veff  has no extrema.  The physical

significance of σ = 1
6  is discussed above (5.39).  The physical meaning of the other

values in (5.40) are understood by analyzing the separatrix‡ structure of (5.35).

Essentially, this corresponds to a limitation placed upon the types of orbits that may exist

before an unstable orbit is reached, and the kinematic classification of the separatrices as

distinct unstable orbits.

                                               
†
 using x rather than 1/x for the horizontal axis pushes the singularity at r = 0  to infinity.  As a result, the

relative locations of fixed points are more easily scaled and plotted in the phase plane with this choice of
variables.
‡
 also termed homoclinic orbit in the literature on nonlinear analysis.
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Veff
2 1−

x

x2*

bifurcation point at σ = 1
6

separatrices: σ: 1
5

1
6

1
7

1
8

1
9

fixed points coalesce:

$E 2 1 0− =

$E 2 1
171− ≈ −

$E 2 1
91− = −

0.8 1

x1*

$E 2 1
161− ≈

In essence, the separatrix gives a graphic representation of the critical relationship

that occurs between energy and angular momentum at the unstable orbital radius (see

Figure 6).  For a given angular momentum (σ ), the critical energy of the unstable orbit is

calculated from $E1  of (5.20).  For the values of σ  plotted in Figure 5, these energies are

computed and marked with horizontal lines.  Substituting these values of $E2 1−  into

(5.35), the separatrices corresponding to (5.40) are plotted in Figure 6.

Figure 5  Schwarzschild Effective Potential

These distinct separatrices divide the phase-plane into four regions of motion for

0 1
6< <σ  (σ = 1

9  is just one special case in Figure 4).  To begin, consider Figure 4 in the

region surrounding the stable fixed point 
r

x2
* .  The oval trajectory in this region

corresponds to an elliptical orbit and was used earlier to find the value for periastron

precession.  A unique parabolic orbit occurs as the phase-plane trajectory just touches the

y-axis and separates the hyperbolic and elliptic orbits.  The hyperbolic orbit† is

characterized by a trajectory approaching M from infinity, but then returning to infinity

                                               
†
 these are actually precessing hyperbolic orbits if one allows negative r values.  Although nonphysical,

these are shown to the left of the y-axis in Figure 4.
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-0.2

0

0.2

0 1
8< <σ σ = 1

8

0 1

-0.2

0

0.2

0.5

1
8

1
6< <σ

0 10.5

σ = 1
6

y

x x

x x

y

y y

with constant dr d/ ϕ .  Therefore, the separatrix of Figure 4 (typical for σ < 1
8 )

corresponds to a critically unstable hyperbolic orbit that separates trajectories spiraling

into M (above the separatrix) or escaping to infinity (below the separatrix).

Similarly, as illustrated in Figure 6 these separatrices are summarized according

to the following values of σ  as distinct unstable orbits:

0 1
8

1
8

1
8

1
6

< < ⇒
= ⇒

< < ⇒

σ
σ

σ

unstable hyperbolic,

unstable parabolic,

unstable elliptic.

(5.41)

It is obvious from Figure 6 that for σ  in the range: 1
8

1
6≤ <σ , only elliptical orbits are

possible (about 
r

x2
* ) before the unstable orbit is reached, while the case 0 1

8< <σ  allows

all three: hyperbolic, parabolic and elliptic as discussed above.

Figure 6  Separatrices for Selected Values of σ
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But these results are consistent with the orbital motion obtained from inspection of the

effective potential for different values of σ  in Figure 5.  However, these qualitative

differences over the range of unstable orbits have not been pointed out in the literature.

It should be noted that a physical orbit corresponding to the separatrix can never

be achieved in finite proper time.  To do so would imply that the phase-plane trajectories

change direction at 
r

x1
* , which is not possible in a deterministic system.  To see this,

consider the proper time equivalent of (5.35) (this is (5.11) after rewriting the equation

using the definition of σ  in (5.13) and again using x r rs= / ):

dr ds E x x x/ $ ( ) /1 62 2 3 21 2= − + − +σ . (5.42)

Separating variables gives an elliptic integral:

c dr E x x xτ σ σ= ± − + − +I / $ / /2 2 31 2 23 8 , (5.43)

which diverges to ± ∞  as r approaches the unstable orbital radius r1  of (5.18) (and (5.20)

is substituted for $E2 1− ), i.e. for a particle approaching the saddle-point along the

separatrix.

From the separatrix analysis it is apparent that a bifurcation occurs at the critical

value 1/ 6σ = , i.e. the topological structure of the phase-plane changes as the two fixed

points move together, coalesce into a single fixed point, and then disappear from the

phase-plane as σ  is further increased above the critical value 1/6.  Therefore, the

Schwarzschild orbital dynamics may be interpreted and analyzed as a conservative 2-d

bifurcation phenomena.  Specifically, this bifurcation is a saddle-center bifurcation [136]

(see Figure 7), and summarizes the range of physically possible orbits that may occur as

the energy and angular momentum are varied for σ > 0 . But from a more general

viewpoint one should also consider negative values of σ  (although it is clear that σ < 0

has no physical interpretation since σ  must be positive definite according to (5.13); note

also that σ = 0  in (5.17) gives the phase-plane equations for light rays - see (5.49)

below).   For σ < 0  the two fixed points (equation (5.18)) exchange stability at σ = 0  as

shown in Figure 7.  Therefore, another (transcritical) bifurcation occurs at σ = 0  (see e.g.

Strogatz [126], pp. 50-52), followed by the saddle-center bifurcation at 1/ 6σ = .
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x2 *
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1 2( * *x xand exchange stability)

x *( )σ
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complex conjugate pair
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1

15
1
8

1
7

1
6 σ

Finally, an interpretation of the phase-plane trajectories to the right of the

separatrix should be given, namely those trajectories leaving and then returning through

the event horizon.  These trajectories are clearly nonphysical since it is impossible for

any classical particle or light ray to escape from within the black hole horizon.  The

origin of these trajectories may be understood as a consequence of the symmetry of

(5.17) under the interchange: ϕ ϕ→ − → −; y y , where ϕ ϕ→ − , is due to the time-

reversal symmetry of the Schwarzschild dynamics.  As a consequence, this system is

classified as reversible and gives the symmetry of Figure 4 (and Figure 6) about the x-

axis, but with the vector field below the x-axis reversing direction.†

Figure 7  Schwarzschild Bifurcation Diagram

Proper and Coordinate Time Analysis

In the standard analysis on relativistic orbital dynamics the proper time parameter

is replaced by the equatorial angle as the independent variable.  One advantage in this

replacement is to simplify the algebra of a perturbative analysis, and is a carry over from

the corresponding Newtonian analysis (see Appendix F).  However, as far as the phase-

plane analysis is concerned there are no essential difficulties analyzing the dynamics

using the proper time (or coordinate time) as independent variables.  To demonstrate the

                                               
†
 incidentally, 

r

x2
*  of Fig. 4 (and Fig. 3) is classified as a nonlinear center, see Strogatz [126], p. 164.
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invariance of the effective potential between the proper and coordinate time reference

frames start with (5.11) to obtain the proper time result (note: using ϕ  rather than τ

eliminates the x4  leading term appearing below):

( / ) &
$ /r c x E xs x2 2 4 2 21 2= − + σ2 7Λ . (5.44)

The corresponding coordinate time expression is obtained using: & ( / ) &x dx dt t=  in

combination with (5.5) which gives

( / ) ( / ) / $ $ /r c dx dt E E xs x2 2 4 2 2 21 2= − +Λ Λ3 8 2 7σ . (5.45)

Solving (5.45) for $E2  gives the coordinate frame expression for the total energy:

$

/

( / ) ( / )
E

x

r c dx dt

x

x s

2

4 2 3

4 2 2 2

1 2
=

+
−

σ2 7Λ
Λ

. (5.46)

By inspection of (5.46), as dx dt/ → 0 , the effective potential (5.14) is recovered, i.e.

$ $ $V V Veff eff eff
2 2 2→ ′ = , is invariant between the proper and coordinate time reference frames.

Therefore, the dynamical structure is invariant, or alternatively stated, the extrema of $Veff
2

are identical in either reference frame.  However, the phase diagrams in each case are not

identical due to the existence of an additional “frame-dependent” fixed point that appears

in the coordinate reference frame at the event horizon (see Figure 8).

To summarize these results, the corresponding phase-plane equations analogous

to (5.17) in both the proper and coordinate time reference frames are derived by

differentiating (5.44) and (5.45), respectively.  In each case the results are given by:

dx d y x E x

dy d x x x x E

/ [ $ ( / ) ]

/ [ ( $ )] / ,

/τ σ
τ σ σ σ

= = ± − +

= − + + −

2 2 2 1 2

3 3 2 2

1 2

7 6 10 8 1 4

Λ
(5.47)

and

2 1/ 2 2 2 1/ 2

3 4 3 2 2 2

ˆ ˆ/ [ (1 / 2 ) ] /

ˆ ˆ/ [9 15 2 (3 7 ) 2 (6 11) 8 ( 1)] / 4 .

dx dt y x E x E

dy dt x x x x x E E

σ
σ σ σ σ

= = ± Λ − + Λ

= Λ − + + + − − −
(5.48)

Although (5.47) and (5.48) are more complicated algebraically than (5.17), the

simultaneous solution of & &x y= = 0  for E2  and x in each case reduces to (5.18) and (5.20)

identically, but with another fixed point, x = 0 , at infinity and at x = 1 in the case of

(5.48).  However, the fixed point at infinity exists for the Newtonian case as well, and is
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Veff
2 1−

y dx d= / τ

x r rs= /

event horizon

x r rs= /

0.4 0.6 0.80.2

parabolic

elliptical

separatrix

x r rs= /

y dx dt= /

Proper Time

Coordinate Time

considered in Appendix F.  The fixed point at the event horizon is obviously coordinate

dependent and does not correspond to any extrema of the effective potential.

Nevertheless, this fixed point has physical consequences for observers in the coordinate

reference frame - explaining the slowing down of objects and redshift of signals from

objects approaching the event horizon.

Figure 8  Proper and Coordinate Time Phase Diagrams
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As discussed below (5.20), there are additional non-physical roots obtained when

solving & &x y= = 0  only for x and y.  The non-physical nature of these fixed points is due

to the fact that there must be a constraint placed upon $E  when τ  or t  is used as the

independent variable.  Solving simultaneously the expressions for y given in (5.47) or

(5.48) gives the proper constraint on $E , and as a result forces these fixed points to

coincide with the extrema of the effective potential.  This is also a feature of the

Newtonian dynamics when using t as the independent variable (Appendix F).

Light Rays

The analysis of photon orbits in the Schwarzschild spacetime is a straightforward

application of the techniques discussed for timelike orbits.  For light rays, dτ = 0 , which

in turn implies that both Ê  and Ĵ are divergent from (5.5) and (5.6), although their ratio

remains finite.  As a result, σ → 0 , and the phase-plane equations for light rays follow as

a special case of (5.17):

′ = = ± − −

′ = −

x y b x x

y x x

[ / ( )]

,

/1 12 2 1 2

23
2

(5.49)

where 1 22 2/ $b E≡ σ , is a constant expressing the dimensionless impact parameter, b, as

the finite ratio of Ê , Ĵ , and rs .

The simultaneous solution of ′ = ′ =x y 0  for 1 2/ b  and x results in two fixed

points and the corresponding values of the impact parameter:

{ ; / } { ; / }x b x b1
2
3

2 4
27 2

21 0 1 0= = = =and , (5.50)

giving the standard results for the unstable orbital radius, x1 , and the impact parameter at

which this instability occurs.  The fixed point, x2 , is a center-node (at infinity) about

which the hyperbolic orbits “precess” and gives the standard result on light bending.

Therefore, the periastron precession of timelike orbits and light bending are actually

special cases of one another: in the timelike case this center node fixed point is at finite r

and allows “real” circular orbits; but for light rays this fixed point moves to infinity and

gives the precessing hyperbolic orbits pointed out above.  However, a phase-plane

calculation of light bending analogous to that discussed for the Schwarzschild case does
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not work here.  This is due to the fact that a linear stability analysis (5.21) “kills” the

necessary terms; namely, the impact parameter b disappears from the matrix A (a similar

result occurs when calculating the period of a simple pendulum for large angles using this

technique).

The phase-plane level curves for light rays in Figure 9 correspond to different

values of 1 2/ b . These are shown together with the locations of the fixed points and

photon effective potential: x x2 1( )− .  The most striking difference between the photon

and timelike dynamics (comparing Figures 9 and 4) is that the center node fixed point

moves to the origin as σ → 0  (as discussed above).  As a result, circular photon orbits do

not exist in any dynamical sense, but become circular in geometry as the orbits approach

the separatrix.  To see this use the definition of y in the first equation of (5.49), and then

separating variables shows that ϕ → ∞  as x x→ 1  and 21/ 4 / 27b →  (this result is

analogous to the proper time divergence pointed out in (5.43)).  Therefore, the separatrix

corresponds to the unstable “photon sphere” that is commonly discussed in the literature

(see e.g. Ohanian and Ruffini [93], p. 410).

The physical interpretation of the various phase-plane regions of Figure 9 is

similar to that of Figure 4, but there are important differences.  For light rays with impact

parameter 1 02/ b = , these orbits just graze the event horizon from the inside and

simultaneously (in an unrelated trajectory) reach the center node fixed point of the

effective potential (see Figure 9).  For 1 02/ b < , b loses its interpretation as an impact

parameter since the trajectories in this case originate from the singularity at r = 0  and lie

within the horizon.  For 21/ 4 / 27b < , the trajectories are confined to within the

separatrix and correspond to the light rays arriving from infinity, reaching a turning point

(given by the appropriate root of the first equation in (5.49)), and then return to infinity as

discussed below (5.50).  For 1 2 4
27/ b > , a photon arrives from infinity (above the

separatrix) and then falls through the event horizon.  The corresponding time reversed

trajectories are given below the separatrix.  The trajectories to the right of the unstable

orbital radius of Figure 9 are also interpreted as time reversed paths that reach a

maximum distance from the event horizon and then return to the singularity.
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Figure 9  Null Geodesics Phase-Plane
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Chapter  6   Reissner-Nordström Dynamics

As discussed earlier in Chapter 2 the Reissner-Nordström solution is the exterior

solution of a spherically symmetric charged distribution of matter that has collapsed to

form a black hole.  The line element was derived earlier and listed below in

Schwarzschild coordinates:

2 2 1 2 2 2

21 / 2 ; / ,s

ds dt dr r d

x x x r rλ

−= Λ − Λ − Ω
Λ = − + =

(6.1)

where 2 2 2 2sind d dθ θ ϕΩ ≡ + ; λ  and σ  are the dimensionless parameters defined

earlier in Chapter 2 (equation (2.100)):

2 24 2

2
sc r G M

Gk e k e
λ    = =      

. (6.2)

From a strictly dynamical viewpoint, the Reissner-Nordström solution exhibits a much

richer orbital structure than the Schwarzschild case - yielding three fixed points whose

relative positions and stability properties in state-space are determined by the values of

black hole charge and orbital angular momentum.  The purpose of this Chapter is to solve

the bifurcation problem for the Reissner-Nordström system, i.e., to present a summary of

the phase-plane topological structure based on a study of coalescing fixed points and to

find the parameter values at which these bifurcations occur.  The separatrix plays an

important role in the analysis by distinguishing the dynamical regions of the phase-plane

at given values of the black hole charge and orbital angular momentum.  The main

difference as far as the separatrix is concerned (compared to the Schwarzschild case) is

that the Reissner-Nordström separatrix is dependent upon the black hole charge, but the

structure of the separatrix resembles closely the Schwarzschild separatrix and therefore

can be used in a similar way to base a qualitative classification of the orbital dynamics.

The main results of this Chapter will be a discussion and graphical analysis of orbital

stability which is presented using the bifurcation diagrams as discussed below.

As discussed in a later section of this Chapter, the presence of charge reduces the

periastron precession compared to the standard Schwarzschild result. Therefore, an

obvious experimental measurement of the gravity induced solar charge considered by
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Eddington [77] and Harrison [79] could be based on observations of perihelion advance.

In fact, Burman has considered this application to Mercury’s orbit using estimates of the

solar charge given by Bailey [137], but concludes that the correction made to the

Schwarzschild precession value is negligible.  Subsequently, Treder, et. al. [138] have

discussed perihelion advance in the Reissner-Nordström spacetime as a means for

estimating the solar charge based on accurate perihelion data for planetary bodies.

Following Burman, Teli and Palaskar [139] also consider the effect of a net solar charge

on the perihelion advance of Mercury’s orbit (as well as to the orbits of Venus and

Icarus).  But the difficulty in such measurements is that the Schwarzschild precession

value is very small to begin with (at least in the solar system; see equation (5.36)).

Orbital Equations and Fixed Points

The Reissner-Nordström and Schwarzschild solutions are both spherically

symmetric and static and therefore the constants of motion and orbital equations obtained

for both solutions have the same general form.  The essential difference arises only from

the form of Λ .  As a result, the phase-plane equations for the Reissner-Nordström system

are obtained from (5.16) and (6.1) ( /sx r r≡ ; /x y dx dϕ′ ≡ ≡ ):

( )3 2/ 3 / 2 1 / ,

x y

y x x xλ σ λ σ
′ =
′ = − + − + +

(6.3)

defining the equatorial motion of a non-charged unit point mass orbiting a charged

spherically symmetric black hole.  For comparison and later reference the dimensionless

parameters σ  and λ  are listed together (defined in equations (5.13) and (2.100),

respectively):

( ) 22 2 41 1
2 2

ˆ( )( / ) ; ( / ) /s sc r J c Gk r eσ λ− == . (6.4)

The Reissner-Nordström fixed points are the roots of a cubic equation while the

Schwarzschild fixed points result from a quadratic.  As a result, the Reissner-Nordström

fixed points (and resulting dynamics) are considerably more complex algebraically.  The

fixed points, *x
r

, are obtained from 0x y′ ′= = , and expressed in the form (denoting

* ** ( , )ix x y=r

; note that * 0y = ):
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1 1
3 3

1 1
3 3

1 1
3 3

4 / 3*
1

7 / 3*
2

7 / 3*
3

/ 2 /(2 3)

/ 2 (1 i 3) /(6 ) i (1 i 3) /(2 3)

/ 2 (1 i 3) /(6 ) i (1 i 3) /(2 3) ,

x a g g

x g g

x g g

λ

λ

λ

−= + ⋅ + ⋅

= + + + + ⋅

= + + − + ⋅

(6.5)

where i  is a complex factor resulting from the cubic equation, 0y′ = .  For brevity, the

following substitutions have been defined in (6.5):

3 2

2 3 2

2 2 2

2 4 2916

3 4( ); 27 54( )

( 2 2 ); 9 12( ) .

g b d c

a b

c d

λ λ σ λ λ λσ
λ λ λ σ λ λ σ

= + +

= − + = − −
= − + = − + +

(6.6)

Parameter Space

The bifurcation problem for the Reissner-Nordström system consists of

determining all possible parameter values of λ  and σ  that correspond to coalescing

fixed points.  A solution to the problem is thus given by basing an analysis on the

descriminant of the cubic equation 0y′ = .  For reference, the descriminant D of a general

cubic equation:

x a x a x a3
2

2
1 0 0+ + + = , (6.7)

is given by (for instance, Abramowitz and Stegun [140]):

3 2D q p= + , (6.8)

where

2 31 1 1 1
1 2 1 2 0 23 9 6 27; ( 3 )q a a p a a a a= − = − − . (6.9)

and therefore, the Reissner-Nordström descriminant simplifies to

( ) ( ) ( )3 2 2 2 39 16 3 9 16
16 3 8 16 99 21 8 / 27Dλσ σ λ λ σ λ λ λ σ λ λ = − − + − + − −  . (6.10)

The roots of (6.7) are thus classified according the sign of the descriminant:

0: 1 real and 2 complex conjugate roots

0: 3 real roots, but at most 2 distinct (a bifurcation point)

0: 3 real distinct roots .

D

D

D

>
=
<

(6.11)

By an application of (6.11) to (6.5) the bifurcations of the Reissner-Nordström fixed

points are identified according to the numerical values of Dλσ .  But note that a

bifurcation analysis of the Reissner-Nordström system based on (6.11) is complicated by
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4 6

-4

-3

-2

-1

1

2
iσ

2 3σ σ=

1 2σ σ=

2 3σ σ=

1σ
1σ

2σ

λ

16(11 3 3)
47λ +=

2

8 16
5 9 2λ =

-1

intersection

the dual parameter dependence of Dλσ .  The solution to this difficulty is given by

eliminating σ  using the descriminant of (6.10) (i.e., the descriminant of the

descriminant).  This secondary descriminant (of (6.10)), Dλ , simplifies to

Dλ λ λ λ= − −45 32 2 2
3 8 8

5
3/ ( )( ) /1 6 , (6.12)

and therefore the iσ  roots of (6.10), corresponding to the case, 0Dλσ = , are expressed in

the form:
1 4 1
3 3 3

1 4 1
3 3 3

1 4 1
3 3 3

1

2

3

(3 /16 1) 3 /16 3

(3 /16 1) 3(1 i 3) / 32 3i(1 i 3)

(3 /16 1) 3(1 i 3) / 32 3i(1 i 3) ,

σ λ λ α β λ β

σ λ λ α β λ β

σ λ λ α β λ β

= − − +

= − − + + +

= − − − − −

(6.13)

where α  and β  are functions of λ :

5
3

31
2 22

(31 64)

47 352 512 16( 2) (5 8) .

α λ λ

β λ λ λ λ

= −

= − + − + − −
(6.14)

Solving 0Dλ =  implies that the iσ  are all real but with only two distinct at the parameter

values:

{0, 8 /5, 2}λ = . (6.15)

In Figure 10, Re( )iσ  vs. λ  is plotted to demonstrate the classification of (6.13) based on

(6.11) (dashed lines indicate the location of complex roots).

Figure 10  Re( )iσ  vs. λ
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An additional parameter value of interest is given by 16 / 9λ = .  At this parameter value

(6.10) becomes quadratic in σ  when 0Dλσ =  (but 0Dλ <  which implies that the iσ  are

all real and distinct).  As a result, the numerical values of λ :

8 16
5 9{0, , , 2}iλ = , (6.16)

when combined with (6.13) give the following values for iσ :

1 1 2 3

2 1 3 2

3 1 2 3

4 1 2 3

0 0

8 /5 8 / 25; 4

16 / 9 0.275; 3.8; 0

2 1/ 4; 2 .

λ σ σ σ
λ σ σ σ
λ σ σ σ
λ σ σ σ

= ⇒ = = =

= ⇒ = = = −

= ⇒ ≈ ≈ − =

= ⇒ = = = −

(6.17)

The point of intersection between Re( )iσ  (toward the right of Figure 10) is obtained by

solving

{ }
1 2,3Re( ) Re( ) ( 31) 64 0

0, 16(11 3 3) / 47 5.5 ,

σ σ β λ

λ

= ⇒ − + =

⇒ = + ≈
(6.18)

where β  is given by (6.14).  The second root of (6.18) gives the desired result but has no

special significance for the dynamics since 0Dλσ >  implies that 2σ  and 3σ  are complex

conjugate (this is region I of Figure 11).

These results are further clarified by Figure 11 which defines the Reissner-

Nordström  parameter space.  The bold line is given by the implicit solution of 0Dλσ =

and divides the space into the seven physically distinct regions labeled in the Figure.

Each segment of this line corresponds to the appropriate real root of iσ  as labeled in

Figure 10.  The bifurcation points (6.17) are given by the intersections of this curve with

the iλ  of (6.16) and marked in the diagram with small circles.  To summarize Figure 11,

different regions of the Reissner-Nordström parameter space correspond to the separate

cases of (6.11), which in turn distinguish the stability properties of the fixed points [note:

the numerical values ( 1, 1, 2)λ λ= − + >  in Figure 11 have no special significance other

than as generic parameter values used to illustrate the dynamics in the indicated regions].
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Figure 11  Reissner-Nordström Parameter Space, ( , )λ σ .

It should be noted that the origin of the parameter space in Figure 11 is

alternatively expressed in terms of Catastrophe Theory [141] which views the parameter

space as a 2-d projection of a 3-d object whose surface is defined by the critical points of

the effective potential.  The folds in the surface correspond to the set of degenerate

critical points (termed the singularity set in Catastrophe Theory).  The significance is that

the degenerate critical points mark a change of stability in the potential which is why the

regions of Figure 11 are dynamically distinct to begin with.

The interpretation of the regions of Figure 11 are simple to deduce from the

parameter values (6.4).  The only physical possibilities are given by λ  and σ  both

positive (regions VI and VII).  Therefore, regions I - V are clearly nonphysical (the

charge and/or angular momentum are complex valued), but as discussed in the next

section, the underlying dynamical structure of regions VI and VII is more easily
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identified by considering the analysis for all regions of the parameter space.  For

reference, the first integral, Ê , is identical in form to the Schwarzschild equation (5.12):

( )2 2 2ˆ/ )ˆ2 ( effdx d E Vϕ σ −= , (6.19)

and the effective potential has the same general form:

$ ( )/Veff x2 21 2= + σ Λ . (6.20)

Equivalently, the effective potential is obtained from the expression for Reissner-

Nordström level curves (listed below) as 0y → :

$ ( ) / ( / ) /E y x x x x x2 2 2 3 4 21 2 2 2− = + − − + +σ σ λ
Schwarzschild

1 2444 3444
, (6.21)

Bifurcation Analysis

As discussed earlier in the Schwarzschild case, the stability properties of the fixed

points are obtained by linearizing (6.3) and then classifying the resulting eigenvalues.

But for the Reissner-Nordström system this approach is formidable algebraically and not

very instructive.  A more direct approach is to consider a graphical analysis that is based

on the level curves of (6.21) in combination with the vector field of (6.3) and the

effective potential at specific parameter values.  The main results from the linear stability

analysis are summarized by the bifurcation diagrams obtained by plotting *x
r

 for fixed

values of λ , while varying the orbital angular momentum.  By including the limiting

behavior of these dynamics (i.e., as ( , )λ σ → ± ∞ ), all regions of the parameter space are

covered in the analysis.  These results are summarized in Figures 14 – 28 and in the

discussion below.  Samples of the Mathematica code (Wolfram [142]) used to obtain

these results are listed in Appendix G.

0λ <

First consider a cross section of the parameter space at 1λ = −  (Figure 11).  This

parameter value is arbitrarily chosen to easily display the (graphical) locations of fixed

points and generic behavior of the dynamics across regions I, II, and III.  The bifurcation

diagram is given in Figure 16 by plotting *Re( )x
r

 vs. σ .  In summary for 0λ < , 1σ  is
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y dx
d= ϕ

2ˆ 1effV −

*
2x

*
1x

-2 1 2

-3

-2

-1

1

2

3

-2 1 2

*
3x

real while 2σ  and 3σ  are complex conjugate ( 0Dλ > ).  Therefore, 1σ  separates regions I

and II as illustrated in Figure 11.  Referring to Figure 11, begin first at 0σ <  along the

line 1λ = −  and then proceed upward from region III to II and then finally to region I.

Region III is characterized by 0Dλσ <  and therefore, the fixed points are real and

distinct with the following stability properties: at 1λ = − , *
1x  is an unstable saddle node

(Figure 12) converging to the numerical value, *
1 1x → −  as σ → − ∞ , while *

2x  and *
3x

are center nodes diverging to ± ∞ , respectively.

Figure 12  Phase Diagram for 1; 0λ σ= − <  (region III).

As both σ → − ∞  and λ → − ∞ , *
1x  is an unstable saddle node diverging to − ∞  while

*
2x  and *

3x  remain center nodes diverging to ± ∞ , respectively.
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The parameter value, 0σ = , gives a transcritical bifurcation point dividing regions II and

III and marks an exchange of stability between *
1x , *

2x , and *
3x .  As in region III, Dλσ  is

also negative in region II and therefore the fixed points are real and distinct but now *
1x  is

a center node while *
2x  and *

3x  become saddles in region II (Figure 13).

Figure 13  Phase Diagram for 11; 0λ σ σ= − < <  (region II).

At 1σ σ= , 0Dλσ = , and a saddle-center bifurcation [136] occurs as the *
1x  saddle node

and *
3x  center node merge together into an unstable degenerate inflection point as

illustrated in Figure 14, however, *
2x  retains its stability as a saddle node.
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Figure 14  Phase Diagram for 11;λ σ σ= − = .

In region I (Figure 15), 1σ σ> , 0Dλσ > , and therefore, according to (6.11), only one real

saddle node fixed point remains and is given by *
3x .  But interestingly, a “pseudo”

transcritical bifurcation occurs at 7 / 4σ =  as *
1x  and *

2x  become complex conjugate

while *
2x  and *

3x  exchange roles (*3x  becomes real at this parameter value). [Note: the

term pseudo is used to indicate that an exchange of roles occurs - not an exchange of

stability.  In this case, it is the switching of real and complex conjugate roots that takes

place while the dynamical properties of the system remain invariant].
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Figure 15  Phase Diagram for 11;λ σ σ= − >  (region I).

Figure 16  Bifurcation Diagram: 1λ = − .
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As σ  is further increased to + ∞ , *
3 1x → −  is the only real fixed point while *

1x

and *
2x  remain complex conjugate with * *

1 2Re( ) Re( )x x=  converging to 1/ 4− .  A

complementary limit of the Schwarzschild bifurcation diagram (Figure 7) is thus obtained

as λ → − ∞  and *
2x  diverges to − ∞  as a center node, while *

1x  ( 0< ) and *
3x  form saddle

and a center nodes, respectively.  For comparison, the true Schwarzschild limit is

obtained as λ → + ∞ .  In this case, *
1x  is saddle node ( 0> ) while *

2x  is a center and *
3x

diverges to + ∞  as a center node (this case is discussed in more detail for 2λ > ).

A “Pseudo” Transcritical Bifurcation Point

Before discussing the bifurcation diagrams corresponding to positive values of λ ,

the structure of these dynamics will be more clearly illustrated by following the location

of the pseudo-transcritical point as λ  is varied.  The location is found analytically by

solving for σ  from the equation:

( )2 / 3

2 3Re( ) Re( ) 6 3 0x x A B C= ⇒ − + = (6.22)

where

2 3 2

4 3 2 2 3

9 12 12 ; 27 54 54

9(6 1) (16 126 ) 3 (16 3 ) 48 16 .

A B

C

λ λ σ λ λ σλ
σ λ σ λ σ σ λ σ λ σ

= − + + = − +

= − + − + − + +
(6.23)

There are two solutions:

3 4 1
4 3 2( ) , ( 2)I IIσ λ λ σ λ λ= − = − − , (6.24)

which are plotted in Figure 17.  The Iσ  solution locates the pseudo-transcritical point

which has a minimum value at 1/ 3σ = − , while IIσ  locates the crossing point between

1 2Re( ) Re( )x x=  and *
3x  (the maximum is at 1/ 2σ = ).  This crossing point and the

pseudo-transcritical point at 1/ 4σ = −  are marked in Figure 17. The points of

intersection between Iσ  and IIσ  determine the two totally degenerate bifurcation points

of the Reissner-Nordström system given by

* * *
1 2 2( 8 / 25 ; 8 /5) 4 /5x x xσ λ= = ⇒ = = = , (6.25)

and

* * *
1 2 2( 0 ; 0) 0x x xσ λ= = ⇒ = = = . (6.26)
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Figure 17  Positions of the Pseudo-Transcritical and Intersection Points of 2,3Re( )x .

0λ =

The interpretation of the bifurcation point (6.25) corresponds to timelike orbits

about a singularity with no horizons ( 2λ < ).  The parameter value (6.26) is a limiting

case of the dynamics that is interpreted as corresponding to photon orbits ( 0σ = ) about a

singularity possessing an infinite charge ( 0λ = ).  However, it should be clear from the

earlier discussion on the cosmic censorship conjecture that the labeling used for either

bifurcation point is based solely on the parameter values and is not expected to

correspond physically to any “real” dynamics.  As 0λ →  from the left, the 1σ  root

separating regions I and II, and the complex conjugate exchange point between *
2x  and

*
3x  both converge to zero.  Therefore, the transcritical, saddle-center, and pseudo-

transcritical bifurcation points merge together to form a stable center-node bifurcation

point at 0λ σ= = .  This case is discussed in greater detail in the later section describing

the Reissner-Nordström null geodesics.

Iσ

IIσ
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1
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x r rs= /

2ˆ 1effV −

x r rs= /
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2x

-4 -2 2
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-4
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2
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8

*
1x

*
3x

0 8 / 5λ< ≤

For 0 8 /5λ< < , the pseudo-transcritical and saddle-center bifurcation points

separate from the transcritical point and are given by Iσ  of (6.24) and 2σ  of (6.13),

respectively, at negative values of σ .  Figure 21 summarizes these dynamics across

regions  IV, V, and VI of Figure 11. The structure of Figure 21 is similar to the

bifurcation diagram of Figure 16, but the dynamics at these parameter values are quite

different.  For example, Dλσ  is negative in both regions III and IV, and therefore, the

fixed points are real and distinct.  However, the stability is reversed in region IV (Figure

18) as λ  changes sign: *
1x  is now a center node converging to *

1 1x →  as σ → − ∞ , while

*
2x  and *

3x  are saddles nodes diverging to ± ∞ , respectively.

Figure 18  Phase Diagram for 20.6;λ σ σ= + <  (region IV).
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* *
1 3x x=

x r rs= /

2ˆ 1effV −

x r rs= /

*
2x

-3 -2 -1 2

-4

-2

2

A saddle-center bifurcation occurs crossing into region V at 2σ , but the stability of *
1x

and *
3x  is reversed compared to Figure 16.  The phase diagram at these parameter values

is illustrated in Figure 19

Figure 19  Phase Diagram for 20.6; ( 0)λ σ σ= + < = .

In region V, *
2x  is the only real fixed point (a saddle node; the phase diagram in

this region is similar to Figure 15) while *
1x  and *

3x  are complex conjugate until the

pseudo-transcritical bifurcation occurs at 0Iσ < .  Once again, *
1x  and *

2x  become

complex conjugate while *
2x  and *

3x  exchange roles ( *
3x  is real at this parameter value

and is now a saddle node).  As a result, the transcritical bifurcation point at 0σ =

(dividing regions V and VI) marks an exchange of stability for *
3x  to a center node

converging to +1, while *
1x  and *

2x  remain complex conjugate with real parts converging

to 1/ 4  as σ → + ∞ .  Compared to Figure 16, IIσ  marks the crossing point of the real

components of 1 2x x=  and *
3x , which does not occur for 0λ < .  In region VI, 0Dλσ > ,

and therefore, *
3x  is the only real fixed point that remains.  Based on the parameter values
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2ˆ 1effV −

x r rs= /

*
2x

-1 2

-0.5

0.5

1

1.5

2

x r rs= /

of region VI, solutions about this fixed point are interpreted dynamically as giving

periodic timelike orbits about a singularity with no horizons.

Figure 20  Phase Diagram for 1; 1λ σ= =  (region VI).

Figure 21  Bifurcation Diagram: 1λ = + .
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The parameter value 8 / 5λ =  gives a totally degenerate bifurcation point

(equation (6.25)).  The significance of this parameter value for the dynamics is seen by

following the evolution of Figure 21 as λ  is increased to 8/5.  As pointed out earlier, the

Iσ  pseudo-transcritical point reaches a minimum value ( 1/ 3Iσ = − ) at 2 / 3λ = , reverses

direction, and then reaches zero at 4 / 3λ =  (see Figure 17).  As λ  is further increased,

Iσ  is positive and approaches IIσ . To better illustrate this behavior, the bifurcation

diagram for λ  slightly less than 8/5 (= 3/2) is given in Figure 22.  Finally, at 8 / 5λ = ,

the pseudo-transcritical point, Iσ , and the crossing point of the real and complex

conjugate roots, IIσ , merge together to give the bifurcation diagram of Figure 23.  At this

parameter value the iσ  are real (equation (6.13)) but with only two distinct

( 1 3 8 / 25σ σ= = ), and form the cusp point in Figure 11, while 2σ  has a minimum value

at 4− .  For 8 / 25σ > , the stability properties of the fixed points are identical to those

discussed for region V.  But in this case, the real parts of *
1x  and *

2x  converge to 2/5 as

σ → +∞ , while *
3x  remains a center node converging to 8/5.  The dynamics and

periastron precession at this cusp point are discussed in the section of this chapter entitled

Orbital Precession About a Bifurcation Point .

Figure 22  Bifurcation Diagram: 3/ 2λ = .
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*x
*
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saddle these points merge 
together at 8 / 5λ =

*
3x

2σ
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Figure 23  Bifurcation Diagram: 8 / 5λ = .

8 / 5 16 / 9λ< ≤

For 8 / 5 16 / 9λ< < , the iσ  are all real and distinct ( 0Dλ < ) as the cusp

bifurcation point separates into two additional saddle-center bifurcations – the first given

at 3σ  – tending toward zero while the second is given by 1σ  (see Figure 11).  As

illustrated in Figure 11 and Figure 24, region VII corresponds to the interval: 10 σ σ< <

and consists of three real fixed points: a saddle (*
1x ), center ( *

2x ), and a saddle (*3x ).  At

16 / 9λ = , the 3σ  saddle-center moves to the origin and combines with the transcritical

bifurcation at 0σ =  as shown in Figure 24 to form an unstable degenerate inflection

point at * *
1 3 4 / 3x x= = .  The phase diagram for these parameter values is illustrated in

Figure 31.  Therefore, two transcritical and three saddle center bifurcation points exist at

16 / 9λ = .  Asymptotically, as σ → −∞ , *
1 16 / 9x →  while *

2x  and *
3x  are saddles nodes

diverging to ± ∞ , respectively.  At σ → +∞  the real parts of *
1x  and *

2x  converge to 4/9

while *
3 16 / 9x = .
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2
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8
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center
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Figure 24  Bifurcation Diagram: 16 / 9λ = .

2λ ≥

The bifurcation point at 2λ =  (Figure 26) is more clearly illustrated by an

intermediate bifurcation diagram at 1.99λ =  shown in Figure 25.  For comparison, at

16 / 9 2λ< < , the 3σ  saddle-center bifurcation is decreasing, while simultaneously, the

2σ  saddle-center is increasing toward 3σ . In the intermediate region between 2σ  and 3σ

of Figure 25, *
1x  and *

3x  are complex conjugate while *
2x  is a saddle node (this is region

V of Figure 11).  At 2λ = , the 2σ  and 3σ  roots merge together into an usual “saddle-

center-saddle-center” bifurcation point of Figure 26 at 2 3 2σ σ= = − ; 1 1/ 4σ = .  For

2λ >  (Figure 27), the *
1x  and *

3x  fixed points separate leaving a transcritical (at 0σ = )

and a single saddle-center bifurcation point at 1σ σ= .
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Figure 25  Bifurcation Diagram: 1.99λ = .

Figure 26  Bifurcation Diagram: 2λ = .
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Figure 27  Bifurcation Diagram: 2 ( 2.1)λ > = .

The Schwarzschild limit is obtained as λ → ∞ .  In this case *
3x  diverges to + ∞  giving

the bifurcation diagram of Figure 7.  For large λ  (and 1σ << ) the fixed points (6.5) are

series expanded to first order in 1λ−  giving (Appendix G):

2*
1

2 2*
2

2*
3

2 2(4 3 )
( )

3 27
3 1

( )
2

2 3 2(4 3 )
( ) ,

3 2 27

x O

x O

x O

σσ λ
λ

σ σ λ
λ

σλ λ
λ

−

−

−

+≈ − + +

 ≈ + − +  
+≈ − + − +

(6.27)

which is consistent with the 1σ <<  expansion of the Schwarzschild fixed points

*
1 2 / 3x σ≈ −  and *

2x σ≈ .  For comparison with the Schwarzschild case the Reissner-

Nordström phase diagram for a typical parameter value 2λ >  is given in Figure 28.

Considering the fixed point *1x , the result in (6.27) indicates that the effect of adding a

small charge to the black hole is to decrease the radius of the unstable orbit.  Similarly,

the 1λ −  term in the expression for *2x  gives a subtractive contribution and therefore the

radii of circular orbits will increase (see also the expansion for *
2x  given by (6.34)).

-2 -1 1

-0.5

1.5

2

( )σ λ

*x
*
3x

*
1x

*
2x

center

saddle center

saddle

saddle

center

* *
1 2x x=

1σ



116

x r rs= /

y dx
d= ϕ

Veff
2 1−

x r rs= /

elliptical

hyperbolic

parabolic

separatrix

x2* x1* $ .E 2 1 0 36− ≈

1

x3*

r+ r−

0.5

1 2 3-0.5

-1.5

-1

-0.5

-2

r+ r−

The locations of the horizons (given by (2.101): ( 2) /sx r rλ λ λ± = ± − =
m

) are

also illustrated in the Figure noting that 2x x+ −= =  at 2λ =  which coincides with the

fixed point *
3 2x =  at these parameter values.  The causal and dynamical interpretation of

the orbits both in and about r+  and r−  have been previously discussed in the literature

(for instance, Chandrasekhar [68], pp. 209-217) and are not included in this investigation.

Here we have considered only the Reissner-Nordström bifurcation problem and a linear

stability analysis about the orbital fixed points.

Figure 28  Phase Diagram: 2 ( 2.1); 1/ 9λ σ> = = .
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Separatrix

The separatrix structure of the Reissner-Nordström dynamics is similar to that

discussed earlier for the Schwarzschild case.  As pointed out earlier in Chapter 5 - a

classification of the dynamics that is based on the distinct separatrices that occur

corresponds to the limitations placed upon the types of orbits that may exist before an

unstable orbit is reached, and the kinematic classification of the separatrices as distinct

unstable orbits. The separatrices themselves are therefore classified kinematically as

unstable hyperbolic, parabolic, and elliptical orbits.  The main difference between the

Reissner-Nordström and Schwarzschild separatrices is given by noting that in the

Reissner-Nordström case ( )σ σ λ=  as given by (6.13).  For comparison, the earlier

classification of qualitatively distinct orbits from Chapter 5 (equation (5.40)) based on the

values of σ  is listed below:

0 1
8

1
8

1
8

1
6

1
6

1
6< < = < < = >σ σ σ σ σ; ; ; ; . (6.28)

Although a generalization (5.40) may be considered for all of the λ  values considered

earlier for the bifurcation analysis, the case 2λ >  is the parameter value which may be

compared to the Schwarzschild case.  Therefore, the bifurcation diagram of Figure 27

applies to give a classification of the fixed point stability properties.  The appropriate

generalization of the bifurcation point is thus given by 1( )σ λ  with the limiting value

displayed above, 1( ) 1/ 6σ λ = ∞ → , as the charge goes to zero.  The generalization for the

value of 1/8 (the binding energy of the orbit is equal to the rest mass energy of 0m  at this

parameter value) is more complicated to obtain algebraically, but in principle could be

obtained by solving for ( )σ σ λ=  from:

2 2 21 0 1 / 2 (1 / 2 ) 1ˆ ( )eff x x xV σ λ− = + − + −= , (6.29)

at the unstable fixed point, *
1x x= .  Denoting this value of σ  by ( )upσ λ (for ‘unstable

parabolic’), the appropriate generalization of (5.40) has the form:

1

1 1

0 ( ) ; ( ) ; ( ) ( )

( ) ; ( ) ,
up up upσ σ λ σ σ λ σ λ σ σ λ

σ σ λ σ σ λ
< < = < <

= >
(6.30)

and therefore the dynamics could be similarly classified as discussed earlier for the

Schwarzschild case.
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Periastron Precession

Periastron precession in the Reissner-Nordström spacetime has received a

surprisingly scanty treatment in the previous literature.  Bronstein [143] was the first to

discuss the effects of charge on the periastron advance, but as pointed out by Kudar [144]

Bronstein’s result was based essentially on a special relativistic calculation and shown

later to be incorrect.  Subsequently, an analysis of charged particle motion incorporating

the approximation method given by Einstein, Infeld, and Hoffman [145] was discussed

by Bertotti [146].  But a calculation of perihelion advance in the Reissner-Nordström

spacetime was not given until 1969 by Burman [147].  Burman later considers an

application of these results to Mercury’s orbit using estimates of the solar charge given

by Bailey [137] but concludes that the correction made to the Schwarzschild (perihelion)

precession value is negligible.  Burman [148] subsequently analyzes the perihelion

advance of Icarus but considers a non-relativistic mechanism to explain the precession.

In a paper discussing the stability properties of circular orbits in the Reissner-

Nordström spacetime, Armenti [149] mentions briefly that the presence of charge should

have a subtractive effect on the periastron advance, although no calculation is given.

Barker and O’Connell [150] have generalized earlier results to the case of the charged 2-

body problem but give little discussion or interpretation of their results.  Subsequently,

Treder, et. al. [138] have discussed perihelion advance in the Reissner-Nordström

spacetime as a means for estimating the solar charge based on accurate perihelion data for

planetary bodies.  Following Burman, Teli and Palaskar [139] also consider the effect of

a net solar charge on the perihelion advance of Mercury’s orbit (as well as to the orbits of

Venus and Icarus).  Finally, Rathod and Karade [151] discuss an alternative procedure for

calculating periastron advance using the Hamilton-Jacobi formalism - in contrast to

earlier calculations based solely on perturbative techniques.

In this Section the phase-plane calculation of periastron precession given earlier

for the Schwarzschild solution is considered for the Reissner-Nordström case.  An order

of magnitude estimate is also given for the charge contribution to the periastron shift in

the limit that the charge contribution to the total mass is small.  As in the Schwarzschild

example the calculation is based on the observation that the phase-plane trajectory about

the center node *2x
r

, must close after a single period in phase space since the system is
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conservative. Therefore, the periastron advance is found by calculating the period of a

phase-plane orbit, Φ :

12πω −Φ = , (6.31)

where ω  is determined from the linear stability solution about *
2x
r

 as illustrated below.

For the Reissner-Nordström system the linear stability equations are identical to (5.26):

2,x y y xδ δ δ ω δ′ ′= = − , (6.32)

however, ω  is given by

22 * *

* *
2

[3 (1 3 ) ] /
x x

x xω λ σ λ
=

= + − + . (6.33)

An expression for ω  is obtained using a perturbative correction for *
2x
r

 by writing to first

order in 1λ −  (a brute force substitution of *2x
r

 from (6.5) into (6.33) is best performed

using a computer algebra system; see Appendix G for a Mathematica code to generate

(6.36) below):

(1) (0)* *
2 2 /x x α λ= + , (6.34)

where (0)*
2x  is given by (5.18).  Substituting (6.34) into (6.33) and then solving for α

subject to the condition that the first order correction vanishes (i.e. agrees with the

Schwarzschild result) gives the following expression for α :

1 14(1 ) 3(1 3 ) / 27 ; 1 6α β β σ β σ− − = − + + = −  . (6.35)

The remaining calculation is straightforward algebra; substituting (6.35) into (6.34) and

then finally into (6.33) gives the result:

1/ 2(1 3 / )ω σ σ λ= − + , (6.36)

where

2

6 ˆ
k G e

c J

σ
λ

 =   
. (6.37)

Therefore, in the Reissner-Nordström spacetime the periastron advance is reduced

compared to the Schwarzschild value (compare also with Burman [147]):

12 2 2 3 /πω π ϕ π πσ π σ λ−Φ = = + ∆ ≈ + − , (6.38)
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x r rs= /

y dx
d= ϕ

Veff
2 1−

x r rs= /

1 2 3* * * 4 / 5x x x= = =

-1 1

α = 0 2.

where πσ3  is the Schwarzschild result given in (5.32).  However, from the order of

magnitude estimates considered earlier for the Sun (equation (2.108)) the 1/ λ  factor is

considerably smaller than the σ  contribution alone.

Orbital Precession About a Bifurcation Point

As discussed earlier, a degenerate bifurcation point of the dynamics occurs at the

parameter values:

* * *
1 2 38 / 25 ; 8 /5 4 /5x x xσ λ= = ⇒ = = = , (6.39)

and is classified as a center-node fixed point (Figure 29).  The dynamical interpretation

(which is not necessarily a physical interpretation) at this bifurcation point follows from

the values of σ  and λ : timelike orbits (for 0σ > ) about a naked singularity (for 2λ < ).

Similarly, another bifurcation point is given by

1 3 20 ; 16 / 9 4 / 3; 0x x xσ λ= = ⇒ = = = , (6.40)

and corresponds to photon orbits ( 0σ = ) about a naked singularity.  The bifurcation

diagram for this case is given in  Figure 23 along the y-axis (i.e., 0σ = ) and is discussed

further in the subsection entitled Light Rays.

Figure 29  Phase-Diagram at the Bifurcation Point: 8 8
25 5;σ λ= = .
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For comparison with the precession given by (6.38), it is of interest to calculate

the precession value at the bifurcation point (6.25) which is given by the parameter

values: 8 / 25 ; 8 / 5σ λ= = .  But in this case the first and second order terms vanish

identically.  Therefore, the expansion must be carried out to third order giving the system:

35
8;x y y xδ δ δ δ′ ′= = − . (6.41)

A first integral follows immediately from (6.41):

2 451
2 32( ) ( ) ; constanty xδ δ γ γ+ = ≡ , (6.42)

and therefore the level curves of (5.46) about * 4 / 5x =  are given by the center-node

trajectories of Figure 29.  The period of a phase-plane orbit is thus calculated by

integrating along a center node trajectory ( 4= ×  1
4 of a period):

4 416
5 0

( ) / ( )d x x
α

δ α δΦ = −∫ , (6.43)

where α  is the turning point defined by solving 0yδ =  in (6.42) for xδ .  Equation (5.2)

is solved using the Beta function (for instance, Abramowitz and Stegun [140]),

1 1
4 2( , ) ( , )B z w B= , expressed as the ratio of two Euler gamma functions, ( )zΓ , to give the

final result:

1
1 41 1

4 2 3
4

4 4 ( ) 9.4
2 ( , )

5 ( )5
B

ππω
α αα

− ΓΦ = = = ≈
Γ

. (6.44)

By comparison with (6.38), the periastron advance at this bifurcation point will be larger

than for the case 2λ ≥ .  A typical numerical example is illustrated using 0.2α =  (see

Figure 29).  Integrating (6.41) numerically over the phase-plane period given by (6.43),

and then plotting the orbital trajectory in the equatorial plane (Figure 30) illustrates that

0m  undergoes multiple revolutions in a radially oscillating orbit before finally

completing a single period in phase-space to give 15πΦ ≈ .

The “acausal” geodesics discussed by Brigman [81] are identified as the center

node trajectories about *3x  in Figure 28.  The distinguishing feature of such solutions is

their proximity to the event horizon r+  and interior Cauchy horizon r− .  As a result, these

orbits are not periodic in the usual sense, but rather, alternate between the various regions

of an extended Kruskal (or Penrose conformal) diagram to other asymptotically flat

universes (see the discussion in Chandrasekhar [68]).  Nevertheless, it is of interest to
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complete this calculation for comparison to the other cases considered earlier, although it

should be clear that the term periastron has no meaning in this context.

Figure 30  Equatorial Motion at the Bifurcation Point: 8 8
25 5;σ λ= = , ( 0.2α = ).

The calculation is completed by substituting * *
3x x=  into the expression derived earlier

for 2ω  and then series expanding in 1λ−  to give (for large λ ):

22 * *

* *
3

[3 (1 3 ) ] /

9 / 4 3 (4 ) / 9 .

x x
x xω λ σ λ

λ σ λ
=

= + − +

= − − +
(6.45)

Therefore, the period of the orbit is given approximately by

4π
λ

Φ ≈
3

, (6.46)

and tending to zero in the Schwarzschild limit.

Light Rays

Light ray kinematics in the Reissner-Nordström spacetime are similar to those

discussed earlier for the Schwarzschild case but there are important differences.  As in

the Schwarzschild example, the phase-plane equations for the Reissner-Nordström

photons are obtained as a special case of the timelike orbits as 0σ → :
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2 2

3 231
2

1/

,

x b x

y x x xλ

′ = ± − Λ
′ = − + −

(6.47)

where 2 2ˆ1/ 2b Eσ≡  is a constant expressing the dimensionless impact parameter, b, as

the finite ratio of Ê , Ĵ , and sr .  However, the simultaneous solution of 0x y′ ′= =  for

21/ b  and x results in three fixed points:

* 3 16
1 4 9

2 2 33 32 16 16
1 64 3 9 9

( )

1/ 9 24 16 ( ) 9 ( ) ,

x

b

λ λ λ

λ λ λ λ λ λ λ

 = − − 
 = − − + + − − − 

(6.48)

2*
2 20; 1/ 0x b= = , (6.49)

* 3 16
3 4 9

2 2 33 32 16 16
3 64 3 9 9

( )

1/ 9 24 16 ( ) 9 ( ) ,

x

b

λ λ λ

λ λ λ λ λ λ λ

 = + − 
 = − − + − − + − 

(6.50)

compared to only two for the Schwarzschild equations which are listed below for

comparison:

2*
1 1

2*
2 2

2 / 3 ; 1/ 4 / 27
:

0 ; 1/ 0 .

x b
Schwarzschild

x b

 = =


= =
(6.51)

The fixed point, *
2x , is identical in both the Schwarzschild and Reissner-Nordström

spacetimes and remains a center node at infinity for all parameter values.  This fixed

point gives the “precessing” hyperbolic orbits and is responsible for light bending.  In

addition, it is not surprising based on the earlier analysis of timelike orbits that a third

fixed point *
3x  appears.

For a comparison with the Schwarzschild fixed points *
1x  and *

3x  are series

expanded to give for large λ :

2*
1 1

2*
3 3

2 / 3 8 / 27 ; 1/ 4 / 27 8 /81

2 / 3 8 / 27 3 / 2 ; 1/ 4 / 27 8 /81 ,

x b

x b

λ λ
λ λ λ λ

= + = +

= − − + = − − −
(6.52)
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degenerate
inflection point

center node
at infinity:

*
2 0x =

* * 4
1 3 3x x= =

2 2
1 31/ 1/ 8 / 27b b= =

21/ b

/sx r r=

/sx r r=

which is consistent with the Schwarzschild expressions for *
1x  and 21/ b  as the charge

goes to zero and noting also that 2*
3{ , 1/ }x b  are divergent (or equivalently, 0r → ).

Furthermore, considering the fixed point *
1x , the result in (6.52) indicates the perturbative

influence of adding a small charge to the black hole – the effect is to decrease the radius

of the unstable “photon-sphere” while simultaneously reducing the impact parameter b.

By inspection of (6.50), a bifurcation occurs at the parameter value, 16 / 9λ = ,

which gives a degenerate unstable inflection point as *
1x  and *

3x  merge together at:

2 2* *
1 3 1 316 / 9 : 4 / 3 ; 1/ 1/ 8 / 27x x b bλ = = = = = . (6.53)

The dynamics at these parameter values are summarized by the phase-diagram and

effective potential in Figure 31.

Figure 31  Phase Diagram for 0; 16 / 9σ λ= = .

But more generally, the significance of this bifurcation point and the stability properties

of the fixed points at other parameter values are summarized in the bifurcation diagram of

Figure 32, as the black hole charge is varied.  The relevance of (6.53) from the
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saddle
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perspective of the bifurcation analysis is that * *
1 3 4 / 3x x= =  is the first real fixed point for

0λ > .  For 0 16 / 9λ< < , the fixed points are complex conjugate.  As displayed in Figure

32, the numerical values of the real and imaginary components of the fixed points are

equal at 8 / 9λ = , which is obtained by equating derivatives of *
1x  and *

3x  which

simplifies to

1 216
9

9 8
0 ( 2 / 3 2 / 3i ; 2 / 3 2 / 3i)

6 ( )
x x

λ
λ λ

− = ⇒ = − = +
−

. (6.54)

However, there are no dynamical consequences for the parameter value 8 / 9λ =  since

the fixed points are complex.

Figure 32  Reissner-Nordström Light Ray Bifurcation Diagram

The significance of the impact parameters is clarified by inspection of the phase-

diagram of Figure 33.  In each case, the value of the impact parameter corresponding to a

given fixed point provides a maximum (or minimum) value for the capture of photons

into one of several possible orbits.  For example, as illustrated in Figure 33, for

2 2
31/ 1/ 0b b< < , the only dynamics that are possible are given by the center node orbits

about *
3x .  For 2 2

10 1/ 1/b b< < , the dynamics are shared by the center nodes at infinity

and at *
3x .  The impact parameter, 2 2

11/ 1/b b= , corresponds to the separatrix and is
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analogous to the unstable “photon sphere” that was discussed earlier for the

Schwarzschild case.  For 2 2
11/ 1/b b> , the dynamics are librational - completing the outer

loop orbits shown in Figure 33.

Figure 33  Phase Diagram for 0; 7 / 3σ λ= = .

The critical case, 2λ = , is significant dynamically in that the impact parameters 221/ b

and 2
31/ b  are equal and therefore the phase diagram and level curves are totally

symmetric about 1r r+ −= =  as shown in Figure 34.

As a result of the spherical symmetry shared by the Reissner-Nordström and

Schwarzschild solutions, the qualitative discussion given earlier for the light rays in the

Schwarzschild spacetime is similar to those for the Reissner-Nordström case.  The main

difference in the Reissner-Nordström case is due to the appearance of a third fixed point

and the fact that the impact parameters for orbits about *
2x  and *

3x  are dependent upon

the black hole charge.  Therefore, the physical interpretation is similar to that discussed in

the Schwarzschild case (for 2λ > ).  The main qualitative features and interpretation of

the impact parameters are discussed below (6.54).

1 2 3

0.5

1

2 3

-1

2
11/ 0.22b ≈
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21/ b
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Figure 34  Phase Diagram for 0; 2σ λ= = .
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Chapter  7   Discussion

The field equations originating from the Riemann tensor quadratic curvature

Lagrangian have been discussed and the analysis and classification of all known

spherically symmetric solutions to the “gauge gravity” theory has been presented.  In

addition, a new exact solution has been found for the field equations originating from the

“energy-momentum” equation of the gauge gravity theory.  However, the analysis

considered here does not preclude the existence of other spherically symmetric solutions

since no solutions have been found for the (–)(+) differential equations that were

discussed in Chapter 3:

2

1 1
0

2

d

dr r r

′Λ − − = Λ Λ 
. (7.1)

Furthermore, Thompson [24] has found an axially symmetric solution that has been

interpreted as a “dumbbell” consisting of two unsupported point masses.  This indicates

that a classification based on spherical solutions – although useful for investigating the

gauge gravity theory – is not completely general and that other nonphysical solutions of

the field equations should be expected based on the work of Havas [36].

The field equations that are derived from the Einstein-Hilbert action by using the

standard variational procedure are equivalent to those obtained when the connection is

taken as an independent variational parameter.  As discussed in Chapter 3 this

“symmetry” no longer applies when the action is taken in quadratic form and the gauge

gravity “Palatini” procedure is applied – which should be distinguished from the true

Palatini procedure where the connection and metric are completely independent.  As a

result, imposing this condition onto the resulting field equations leads to an auxiliary

algebraic constraint that restricts the class of spacetime solutions satisfying the gauge

gravity field equations.  The constraints are equivalently derived as a contraction of the

integrability conditions for the Ricci tensor.

The auxiliary condition gives an interesting result since it originates from the

requirement that the quadratic curvature action behave analogously to the Einstein-

Hilbert action with respect to both variational procedures.  As a result, several (but not

all) of the nonphysical solutions are eliminated from the gauge gravity equations.

However, a general mathematical classification of such spaces has not been found in this
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analysis.  A more restrictive condition must be met to eliminate all spaces that are not

Einstein spaces since it is obvious from the analysis in Chapter 3 that

1
4( ) ( )R R R R R g Rρ ρσ

µ ρν ρµσν µν µν= ⇔ = , (7.2)

is not valid in general.  The counter-example is given by the Einstein universe metric,

although it should be noted that the Einstein universe metric is not a solution to the

Einstein free-field equations.  In addition, the LHS of (7.2) eliminates all known solutions

that are not solutions of the Einstein free-field equations.  But it would be premature to

claim any general results from this analysis without a general mathematical classification

of the spacetimes implied by R R R Rρ ρσ
µ ρν ρµσν=  (since only the spherically symmetric

solutions were investigated as counter examples in this study). Although some progress

has been made toward the goal of a general mathematical classification (from the study of

the spherically symmetric solutions as considered in the latter part of Chapter 3) it is

difficult to deduce general results from this analysis.

In the second part of the thesis the stability properties of point particle orbital

dynamics in both the Schwarzschild and Reissner-Nordström black hole spacetimes have

been analyzed using the phase-plane and bifurcation techniques. In general, the phase-

plane and bifurcation techniques originate from dynamical systems theory as a means for

classifying the solution structure and fixed points of nonlinear differential equations.  The

phase-plane analysis gives a method for classifying the local stability properties of fixed

points, and when the equations are integrable, is useful for constructing phase-plane level

curves that illustrate the global phase plane structure for a given system of nonlinear

equations.  The bifurcation analysis is a complementary method for identifying

coalescing fixed points and the parameter values at which these “bifurcations” occur.

When used in combination, a visual and quantitative method is available to analyze the

relativistic orbital dynamics.  As a result, a more intuitive approach can be taken based on

the “energy method” to classify and summarize the various dynamics that may occur –

particularly with regard to the stability properties of the orbits.

For additional applications it would be interesting to analyze solutions other than

the Schwarzschild case, e.g., the Kerr solution (a rotating black hole), or the Kerr-

Newman solution (a charged, rotating black hole).  Further applications would include an

analysis of cosmological solutions (although some work has already appeared on this
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topic - see the Introduction for a discussion of the literature) and also non-conservative

orbital dynamics (i.e. systems emitting gravitational radiation) and analysis of solutions

stemming from alternative theories of general relativity, e.g., those considered in

Chapters 3 and 4.  The analysis on non-conservative dynamics is of special interest given

that a considerable experimental effort has been recently organized to detect gravity

waves (e.g., LIGO), and therefore, qualitatively simpler models that illustrate the

dynamics of gravity wave production would certainly be of interest.  Additional

techniques of analysis that have been developed from the study of limit cycles and

attractors in non-conservative systems would then be available and may prove useful in

the classification and visualization of these dynamical processes.

Essentially, the utility of analyzing the relativistic dynamics using bifurcation

analysis is due to the fact that the relevant physical parameters are isolated and provide a

central role in the analysis.  For example, the Schwarzschild orbital dynamics are

characterized by a dimensionless parameter, σ , involving the angular momentum which

is related to the energy of the system at the unstable orbital radius through the separatrix

structure of the phase-plane.  Identifying the bifurcations that occur as σ  is varied then

provides a summary of the stability properties and dynamics over the complete range of

values taken by the energy and angular momentum.  As a result, seemingly unrelated

orbital dynamics at different parameter values may be interpreted simply as different

stages of a given bifurcation.  These considerations become especially important when

interpreting the dynamics associated with more complex physical situations such as the

Reissner-Nordström, Kerr, and Kerr-Newman solutions.  The Reissner-Nordström and

Kerr solutions are similar in that one additional physical parameter (charge and spin

angular momentum, respectively) beyond the orbital angular momentum of the system is

required to characterize the dynamics.  Therefore, a 2-d parameter space is required in

both cases to classify the dynamics.  A thorough analysis of the Kerr dynamics using

traditional methods has been given earlier by Bardeen et. al. [152] and also

Chandrasekhar [68] (see also the references given in the Introduction).

Although the Kerr solution has not been considered in this study, it is worthwhile

to point out some difficulties encountered in the analysis when considering a direct

application of the phase-plane and bifurcation techniques to the Kerr dynamics in the
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equatorial plane.  To illustrate, the Lagrangian for the Kerr solution (for the simplifying

case that / 2θ π= ; 1G c= = ) is expressed:

2 1 2 2ˆ2 1 2L t r ax tϕ ϕ−= = Λ − ∆ − Σ +& &

& && , (7.3)

where

2 2 2 2 2 2(1 ) ; (1 / ) ; [ / (1 )] ; /s s sx x a x r r x a x x r rΛ = − ∆ = − + Σ = + + = . (7.4)

The parameter a corresponds to the spin angular momentum of the system per unit black

hole mass.  As in the Schwarzschild and Reissner-Nordström analysis the total energy

and orbital angular momentum are constants of the motion:

ˆ

ˆ ,

E t ax

J ax t

ϕ
ϕ

= Λ +

= − + Σ

&

&

&

&

(7.5)

and therefore t& and ϕ&  are expressed:

2 2 1

2 2 1

ˆ ˆ( )( )

ˆ ˆ( )( ) .

t E a x J a x

a x E J a xϕ

−

−

= Σ − Λ Σ +

= + Λ Λ Σ +

&

&

(7.6)

The corresponding expression for /dx dϕ  is thus obtained:

( )2 4 2 2 2/ [ 2 1] / sdx d x t ax t rϕ ϕ ϕ ϕ= ∆ Λ − Σ + −& &

& & & , (7.7)

and then substituting (7.6) into (7.7) gives the result:

2 4 2 2
2 2 2 2 2

2 2

( ) ˆ ˆ ˆ ˆ( ) 2
ˆ ˆ( )s

dx x a x
E t a x J ax E J

d r a x E c Jϕ
  ∆ Λ Σ +  = Σ Λ − + + Λ +   + Λ 

& . (7.8)

To obtain the effective potential set / 0dx dϕ = , solve for Ê , and then substitute into

2ˆ 1E −  to obtain the following two cases (letting ˆ / 2sJ r σ→ ):

2 2 4 2 2 2
( ) 1/ 2 2

2 2 2

ˆ 1 (1 / 2 ) 1 [2 ( )( / 2 ) / ]

(1 / ) / ,

s
eff s s

s

a r
V r x a x r

x

a x r

σ σ σ

σ

± − = Λ + Σ − ± ∆ + ΛΣ Σ +
∆ Σ

+ + Σ Σ
(7.9)

where the (–) case corresponds to a particle rotating in same sense as the Kerr black hole,

and the (+) case is the effective potential for a particle that is orbiting in the opposite

direction of rotation.  To check the correspondence with the Schwarzschild result

substitute for ∆ , Σ , Λ  and series expand to first order in a to obtain:

2 2 3 3 2 2
( )

ˆ 1 ( ) / 2 (1 )( 2 ) /eff

Schwarzschild

V x x x ax x xσ σ σ± − = − − ± − +
1442443

, (7.10)
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which reduces to the Schwarzschild effective potential as 0a → .  The main difficulty

when applying the phase-plane analysis to the Kerr solution is that the algebraic equation

that must be solved for the fixed points: ( )
ˆ / 0effd V dx± = , is non-polynomial in x.

Therefore, no closed form solution can be obtained in this case - at least for the choice of

variables and coordinate system used above.

Finally, the pedagogical value of the phase-plane and bifurcation techniques to

general relativity calculations should not be under emphasized.  The literature on the

subject is vast and alternative methods of presentation that make general relativity

conceptually simpler for beginning students is an active area of investigation (e.g., [153]).

The conceptual advantage of the phase-plane approach is based on the fact that the phase-

plane method is a pictorial method closely related to the “energy-method” diagrams

taught in introductory mechanics courses.  As a result, a qualitative approach is

emphasized that makes the underlying physical concepts easier to grasp for beginning

students.  For example, the Schwarzschild periastron calculation is tied directly to the

existence of the center node fixed point and is a relatively straightforward calculation that

eliminates much of the unnecessary algebra that appears in other presentations.  The

analysis presented in Section VI demonstrates that important topics such as dynamical

invariance is also easily handled using the phase-plane approach.  Such topics provide

nontrivial and physically interesting examples which normally are difficult conceptually

for beginning students.

In summary, constructing an exact phase-plane for an arbitrary solution will only

be possible if the fixed point algebraic equation, ′ = ′ =x y 0 , is of fourth order or less

(and in addition that a sufficient number of first integrals exists).  Otherwise, finding

roots will be difficult if not impossible.  However, a numerical approach could always be

taken, and would be motivated by the interesting pictures that result from combining the

fixed point structure of general relativity state-space into a diagram that includes the

event horizon.
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Appendix A: Mathematica Calculations - Chapter 2

Note: The computer algebra system calculations in this appendix (and Appendices B, E,

and G) were performed using Mathematica version 3.0 – a software package developed

by Wolfram Research [142] and running under Microsoft Windows NT version 4.0 and

Windows 98.  Specialized tensor calculations were performed using the Mathematica

add-on package MathTensor version 2.2, developed by Parker and Christensen [117].

Initialize MathTensor

Einstein-Hilbert Standard Variation:

Perform the variation ( hδ   corresponds to gδ ,  semicolons denote covariant
derivatives):
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Remove derivatives from gδ  and factor det g (i.e., partial integration):

This is the result:

Schwarzschild and Reissner-Nordstrom Solutions:

Load the File:

Display the Metric ("4" Labels the time coordinate):

Here are the non-zero Christoffel Symbols :

Ricci Tensor :
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Schwarzschild Solution :

Display the Ricci Scalar:

Reissner-Nordstrom Solution:

Maxwell’s Homogeneous Field Equations:

Finally, this defines source-free Maxwell:

Define Components:
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Load and Display the Metric ("4" Labels the time coordinate):

Evaluate Ordinary Derivatives:

Lower indices on the Field Strength tensor:

Raise an Index:

Define the Energy Momentum Tensor:

Traceless:

These are the field equations:
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Maxwell’s homogeneous equations:

Substitute back into the field equations:

The Reissner-Nordstrom Solution:
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Schwarzschild Christoffel Symbols:

Reissner-Nordstrom Christoffel Symbols:
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Appendix B:  Mathematica Calculations - Chapter 3

Initialize MathTensor

Define the first Gauge-Gravity Field Equation:

Define the second  Gauge-Gravity Field Equation:

Finally, this defines equation :

Define the Auxiliary Condition:

Evaluate Ordinary Derivatives:

Tensor Calculations - Ricci, Riemann, Weyl Tensors, Field Equations

Load the File:

Display the Metric ("4" Labels the time coordinate):
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Here are the non-zero Christoffel Symbols :

Display the Ricci Tensor :

Display the Ricci Scalar:

Non-zero Components of the Riemann Tensor :
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Non-zero Components of the Weyl Tensor :
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First gauge gravity field equation 0H µν =

em = Table[MakeSum[H[-i, -j]], {i, 4}, {j, 4} ]

Second  gauge gravity field equation 0Yµνσ =
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Different cases of the  0H µν =  equations

This is the (+)(+) case (Satisfies 0Yµνσ =  equations too)

Pavelle-Thompson works here (remember - solution goes as 1 / f ):



145

This is the (+)(-) case:

This is the (-)(+) case:

This is the (-)(-) case (Satisfies 0Yµνσ =  equations):
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Different cases of the 0Yµνσ =  equations

This is the (+)(+) case (Satisfies equations too):

This is the (+)(-) case (the only solution is B=constant):
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This is the (-)(+) case (the only solution is for (k=1) )):

This is the (-)(-) case (Satisfies equations too):
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This is the case that A’’ - A’ B’ = 0 (with A’ = constant) - This also gives Ni’s solution:
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second  gauge gravity field equation with A=0:

This case is Ni’s Solution:

A Pavelle - Thompson Extraneous Solution - This is a special case of Ni’s solution with 
= 0:
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Auxiliary Condition

Table[Factor[MakeSum[ac[-i, -j]]], {i, 4}, {j, 4}]

00 Case:

11 Case:

22 Case:

Linear Combinations:
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This is the (-) case for 00:

This is the (-) case for 11:

This is the (-) case for 22:
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This is the (+) case for 00:

This is the (+) case for 11:

This is the (+) case for 22:
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This is the A - 0 case for 00:

This is the A - 0 case for 11:

This is the A - 0 case for 22:

Each term has this differential equation as a factor - which has the Einstein Universe as
a solution:
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This is the B - 0 case for 00:

This is the B - 0 case for 11:

This is the B - 0 case for 22:

Solution for the 22 case:

But does not satisfy the other two equations:



155

Additional Vanishing Ricci Scalar Analysis :

Vanishing Ricci Scalar Differential equations (A = B case (+)(+)):

Pavelle-Thompson works here (Schwarzschild does not):

Vanishing Ricci Scalar Differential equations (A=const. case):

Thompson Solution works:

Vanishing Ricci Scalar Differential equations (A’ = B’ case):
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Vanishing Ricci Scalar Differential equations (A = - B case):

Additional Vanishing Weyl Tensor Calculations :

Vanishing Weyl Tensor Differential equations (A’ = B’ case):
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Vanishing Weyl Tensor Differential equations (A=const. case):

Vanishing Weyl Tensor Differential equations (A = - B case):

Vanishing Weyl Tensor Differential equations (A = B case) (this is also the (+)(+) case -
satisfies = 0 equations, and Vanishing Ricci Scalar and Weyl Tensor too)):
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Pavelle-Thompson works here (reminder - solution goes as 1 / f ):

Gauss-Bonnet Variation Results

A separate MathTensor Session:

Euler-Gauss-Bonnet Linear combination

This is :

Perform the variation:

Remove derivatives from gδ  and factor det g:

Remove derivatives from gδ :

Factor out gδ :
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This is :

Perform the variation:

Remove derivatives from gδ  and factor det g:

Remove derivatives from gδ :

Factor out gδ :

Express in a different form by removing derivatives from the Ricci tensor:

This is :
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Perform the variation:

Remove derivatives from gδ  and factor det g:

Remove derivatives from gδ :

Factor out gδ :

Express in a different form by removing derivatives from the Riemann tensor:

Lanczos Linear Combinations:
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This gives the Gauss-Bonnet Variation result:

Define a Rule Making the Weyl Tensor Trace-Free on any Index Pair:

Apply the rule:
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Auxiliary Condition for Miscellaneous Metrics

Initialize a Separate MathTensor Session:

Define the Auxiliary Condition:

Evaluate Ordinary Derivatives:

For the Pavelle-Thompson Metric:

For the Thompson Metric:
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For Kottler’s Metric:

For the Einstein Universe Metric:

For Ni’s Metric:
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For the Vanishing Ricci Scalar Metric:

Tensor Calculations for the Auxiliary Condition:

Define the Auxiliary Condition:
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Define a Rule Making the Weyl Tensor Trace-Free on any Index Pair:

Apply the rule:

Define a Rule to Make the Trace Free Ricci Part Vanish on Contraction:

Apply the rule:

This is the result:
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Appendix C:  Gauge Kinematics in Classical Mechanics

In the first section of Chapter 4, the prototype SU ( )2  gauge theory formalism

developed by Yang and Mills has been considered.  The general pattern in this approach

may be identified:

starting from a global symmetry - local dynamical invariance is established by

introducing a “connection” - expressed as a linear combination of the algebra

basis for the symmetry group.

Therefore, as an exercise following this pattern - consider the equations resulting from

this general prescription outlined above - applied to the invariance of Lagrange’s

equations under local† rotations.

To this end, let us consider the free motion of a point mass in rectilinear

coordinates so that

L m x x i ji j
i j= =1

2 1 2 3δ & & ; , , , . (C.1)

Obviously, (C.1) is (globally) invariant under a constant rotation:

& & ( ) ( ) &

,

x x d x d R x R x

L L

i i
t

i
t j

i j
j

i j→ = = =

⇒ = ′

′ ′
⋅

′
⋅

′

(C.2)

since R j
i
⋅  is orthogonal where

)[ ] (3,
k

ki i
j jR e SOθ λ

⋅ ⋅= ∈ � , (C.3)

using the adjoint representation ( ⇒  i, j and k have the same index range) with θ k ≡

group parameters and λ k  generating the (3)so  Lie algebra:

[ , ]λ λ ε λj k jk
i

i= ⋅ . (C.4)

                                               
†
 “local” in this sense means that the group parameters are time dependent.
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However, under local rotations (i.e. θ θk k t= ( ) ), L is no longer invariant as may be

checked substituting (C.2) into (C.1) for the case that R R tj
i

j
i

⋅
′

⋅
′= ( ) .  Therefore, let us

construct a gauge covariant derivative from (3, )so � :

∇ = + ⋅t
i

t
i

jt
i jx d x xΓ , (C.5)

to obtain local invariance under (C.3).  Following the prescription outlined above, the

Γ ’s are

Γ Γ Γ Γ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅≡ = ≡j t
i

t
k

k j
i

t
k

k j
i

t
k

k j
i[ ]λ λ ε , (C.6)

and with this identification, (C.5) becomes

∇ = + ∧⋅t
i

t
i

t
k j ix d x x( )Γ . (C.7)

But this already looks familiar recalling the usual replacement in a (non-inertial) rotating

reference frame:

& & ( )′ = + ∧x x xi i k j iω , (C.8)

and then comparing with (C.7) we identify

Γ Γ⋅ ⋅ ⋅≡ = ≡ =
−

−
−

�

�
���

�

�
���

⇒t
k k

t
k

jt
i

k j
i kdω θ ε ω

ω ω
ω ω

ω ω

0

0

0

3 2

3 1

2 1

. (C.9)

Carrying through with the analogy, we derive the transformation law of the Γ ’s:

Γ Γ⋅ ′
′

⋅
′

⋅ ′
⋅

⋅
′

′
⋅= −j t

i
k
i

lt
k

j
l

t l
i

j
lR R d R R( ) ,

requiring as before that

∇ → ∇ = ∇′
⋅

′
t

i
t

i
j

i
t

jx x R x . (C.10)

Given the transformation in (C.10), ∇ ′
t

ix  and ′L  are now invariant under time-

dependent (3, )SO �  transformations when L is expressed in terms of ∇t :

L m x xi j t
i

t
j= ∇ ∇1

2 δ ( ) ( ) ,

as are the dynamical equations:

∇ − =
∇t x xt

i iL L∂ ∂4 9 0 . (C.11)

Substituting for ∇t  in the above gives the form of L:

L m d x d x x xt t= + ⋅ ∧ + ∧1
2

2 22( ) ( ) ( )
r r r r r rω ω , (C.12)
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and then (C.11) becomes

m x m d x d x d x xt
i

t
i

t
i

t
i i( ) ( ) ( ) ( ) ( )∇ = − + ∧ + ∧ + ∧ ∧2 2 2

r r r r r r r r rω ω ω ω , (C.13)

showing that local gauge invariance of Lagrange’s equations under )(3,SO �  leads to the

usual dynamics in a (non-inertial) rotating frame of reference.  However, this is as far as

we go with the analogy, since by constructing

ϕ ∂ ∂⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= − + −j t t
i

t j t
i

t j t
i

k t
i

j t
k

k t
i

j t
kΓ Γ Γ Γ Γ Γ , (C.14)

we see immediately that the gauge field is identically zero.  As a result, one could not

expect to obtain (C.11) from an action constructed like (3.13).  Therefore, (C.12) and

(C.13) are essentially gauge kinematic equations based on (3, )SO � , not the gauge

dynamical equations usually considered in standard gauge theory.

One final comment: the connection in (C.9) is given in the adjoint representation.

But we might also consider the spinor representation and therefore obtain a “spinor

formulation” of mechanics as discussed by Hestenes [154].  However, as seen above, this

spinor form would be merely an arbitrary representation of a gauge-type (kinematic)

theory based on )(3,SO �  (giving (C.12) and (C.13) in the adjoint rep).  Therefore, it

would seem unnecessary to view these equations as deriving solely from a Clifford

algebra reformulation of classical mechanics - as motivated by Hestenes.
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Appendix D:  Orthogonal Groups

A central theme of the analysis considered in the early sections of Chapter 3 is

invariance under a given transformation group.  The general gauge theory formalism

reviewed in Chapter 2 provides a systematic method for deriving dynamical equations by

postulating invariance under a given symmetry group.  This technique is applied in

Appendix C to a familiar example from classical mechanics.  The purpose of the present

Appendix is to provide a brief introduction to the orthogonal group using low

dimensional examples and to define the notation used in earlier Chapters.

Axioms

A group is the pair: ( , )G o , where G  is a set and o  is the binary operation of group

multiplication satisfying (using the usual quantifiers: ∀ ≡ for all, for every; ∃ ≡ there

exists; and the abbreviations: . .s t ≡  such that; ! ≡  unique).

(1) , ,i j i jg g g g∈ ∀ ∈G Go    (closure)

(2) ( ) ( )i j k i j kg g g g g g=o o o o , , ,i j kg g g∀ ∈G    (associatively)

(3) ! element 1 , . . 1 1 ,i i i is t g g g g∃ ∈ = = ∀ ∈G Go o    (existence of the identity)

(4) 1, ! elementi ig g −∀ ∈ ∃G , 1 1. . 1 ,i i i i is t g g g g g− −= = ∀ ∈Go o    (existence of

the inverse)

An algebra is the triple: ( , , )A V o , where A  is a set, V  is a linear vector space, and o  is a

map, : × →V V Vo , defined between elements of A  and satisfying:

(1) , ,i j i ja a a a∈ ∀ ∈A Ao    (closure)

(2) ( ) , , ,i j k i j i k i j ka a a a a a a a a a+ = + ∀ ∈ Ao o o  (bilinearity)

( ) , , ,j k i j i k i i j ka a a a a a a a a a+ = + ∀ ∈ Ao o o
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Other varieties of algebra’s may be obtained depending on which additional postulates

are satisfied, for example:

(3) ( ) ( ) , , ,i j k i j k i j ka a a a a a a a a= ∀ ∈ Ao o o o   (associativity)

(4) ! element 1 , . . 1 ,i i is t a a a∃ ∈ = ∀ ∈! Ao    (existence of the identity)

(5) , ,i j i j i ja a a a a a= ∀ ∈ Ao o    (commutative)

(6) , ,i j j i i ja a a a a a= − ∀ ∈ Ao o    (anti-commutative)

(7) ( ) ( ) ( )i j k i j k j i ka a a a a a a a a= +o o o o o o    (a derivation)

Along with (3), (4), (5), (6), (7); the properties of o  define the algebra and in the case of a

Lie algebra (for instance, Gilmore [155]) the product is given by the Lie bracket:

[ , ] [ , ]i j j ia a a a= − .  With this anti-commutative product, property (7) may be written:

[[ , ] , ] [[ , ] , ] [[ , ] , ] 0i j k j k i k i ja a a a a a a a a+ + = . (D.1)

which is more commonly referred to as the Jacobi identity.  There are other properties of

Lie algebra’s that classify them as topological spaces, but these topics are beyond the

scope of this Appendix.  We will, however, make use of the exponential mapping to

construct elements of the Lie group, which is dependent upon the property (simply

assumed here) that each element of the group may be continuously connected to the

identity element in group space.

Orthogonal Groups

Consider the group of transformations preserving the line element of an nR  (i.e.

an nE  with a symmetric fundamental tensor g; ordinary if g is positive definite,

indefinite otherwise) defined in this case using a rectilinear coordinate system, ( )i :

2 ; , , ... , , ... . 1, ...,i j
i jds g dx dx i j k i j k etc n′ ′ ′= = . (D.2)

The kernel symbol, g, denotes a general metric quantity but in the rectilinear system, a

representation of g is ijg , identical to the Kronecker delta (*=  emphasizes that the

equation is only valid in the specified coordinate system):
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*
i j i jg δ= . (D.3)

Using kernel-index notation the transformation is expressed:

2 2 2 i j
i jds ds ds g dx dx′ ′
′ ′′→ = = , (D.4)

and equality with (D.2) means that 2ds  is a scalar quantity.  Substituting the

contravariant transformation rule:

i
i i i i

ii

x
dx dx R dx

x

∂
∂

′
′ ′= ≡ , (D.5)

into (D.2) and then combining with (D.4) gives a condition on the invariance of ijg :

i j
i j i j ijR R g g′ ′

′ ′ = , (D.6)

or equivalently a condition on the i
iR ′ :

( )i
iR O n′ ∈ . (D.7)

I.e. i
iR ′  is an element of the orthogonal group ( )O n , a subgroup of the general linear

group, ( )Gl n  (the group of all n n×  nonsingular transformations).  But note that no

number field ( F ) has been specified to this point for the entries of R i
i′ , e.g. the real (� ),

or complex (� ) number fields might be used to define entries of i
iR ′ .  But rather than

specifying a pre-determined number field for the undetermined group elements, for

generality let us solve (D.6) for several low dimensional cases and then let the possible

ranges of these entries determine F .

Returning to (D.6), multiplication by k jg  gives

i k k
i i iR R δ′

′ = , (D.8)

and the quantity

k j k j
i i j jR g R g′
′ ′ ′= , (D.9)

is defined as the adjoint of j
jR ′  through the raising and lowering of appropriate indices as

shown above.  But note that for proper matrix multiplication the ordering of indices

should be switched on k
iR ′  to k

iR ′ , so that in real applications (D.8) and (D.9) should

read:
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i k k
i i iR R δ′

′ = , (D.10)

k j k j
i i j jR g R g′
′ ′ ′= , (D.11)

respectively.  In rectilinear coordinates the adjoint is identical to the transpose, however,

in cases involving an indefinite metric, the transpose and adjoint are not necessarily

identical (e.g. see (1,1)O  below).

(2)O

Consider a special of case of the equations when the dimension of i
jR  is 2 2×

and defined with entries of an arbitrary field F :

i
j

a b
R

c d

 =  
 

. (D.12)

Equation (D.10) is then:

2 2

2 2

1 0

0 1

a b a c a b ac bd

c d b d ac bd c d

 + +    = =      + +     
, (D.13)

giving a system of 3 equations in 4 unknowns, and therefore the solution will have only 1

independent parameter.  The general solution satisfying (D.13) gives 4 possible elements

for the i
jR  (expressed arbitrarily in terms of the parameter c):

2 2

2 2

2 2

2 2

1 1
, ,

1 1

1 1
, .

1 1

i
j

c c c c
R

c c c c

c c c c

c c c c

   − − − − −   =    − − −   
   − − + −       + − − −    

(D.14)

The first two correspond to transformations with det 1i
jR = + , i.e. “special”

transformations or (2)SO , while the second two correspond to reflections about the x and

y axes, respectively; with det 1i
jR = − .  In addition note from (D.14) that every solution

to (D.13) satisfies det 1i
jR = ± , independent of c which is a general property that can be

derived directly from (D.8)).
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(2, )SO �

To construct the Lie subgroup (2, )SO �  of (2, )O � , consider an exponential

expansion (since by definition of the Lie group these elements are continuously

connected to the identity), parametrized in terms of c (c is assumed real) and the

undetermined generator i
jL :

i
jc Li

jR e= . (D.15)

Series expanding both sides in the parameter c about 0c =  to first order gives

0 0

i i i i
j c j j jc c

R R c c L∂ δ
= =

+ = + , (D.16)

and then substituting explicitly into (D.13) for the first solution of (D.14) results in the

system:

0 1

1 0

f h
c c

j k

−   =   
   

, (D.17)

assuming arbitrary elements, { , , , }f h j k , for the i
jL .  Therefore to first order in c the

solution is:

0 1

1 0
i
jL

− =  
 

, (D.18)

and then substituting into (D.15) (series expanding and changing c θ→ ) gives the result:

2 4 3 5

3 5 2 4

2! 4! 3! 5!

3! 5! 2! 4!

cos sin1 ... ...

sin cos... 1 ...
i
jR

θ θ θ θ

θ θ θ θ

θ θθ
θ θθ

− − + + − + − +  = =   − + − − + +   
, (D.19)

or by comparison with (D.17), sinc θ→ .

For the third element of (D.14), (D.16) becomes:

1 0 0 1 1 0

0 1 1 0 0 1

f h
c c

j k

−       + = +       +       
, (D.20)

showing that no Lie algebra exists in this case because the solution is “discontinuously”

connected to the identity by inspection.  Similar results are obtained for the fourth

element.  As discussed below the second group element differs from the first by a rotation

of π .  As a result, the entire Lie algebra is given by (D.18), corresponding to the Lie

subgroup (D.19) for (2, )O � .
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Substituting the solution sinc θ=  into (D.14) gives an alternative expression for

the group elements:

cos sin cos sin cos sin cos sin
, , , .

sin cos sin cos sin cos sin cos
i
jR

θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

− − − −        =         − −        
(D.21)

The first group element is (D.19) (a counter-clockwise rotation - denoted by R↑

(clockwise will be R↓ )); the second is a clockwise rotation followed by a rotation π

( R Rπ ↓× , and is therefore a member of the Lie group); the third is a counter-clockwise

rotation followed by a reflection about the y-axis, then a rotation of π  ( )f yR R Rπ ↓× × ;

the fourth is a clockwise rotation followed by a reflection about the y-axis ( )f yR R↓× .

Therefore, any element of (D.21) may be obtained from a minimal set consisting of an

arbitrary rotation and a single reflection (in the above example the third element results

from: f y f xR R Rπ × = ).  Hence, one choice would be

{ }cos sin 1 0
, ,

sin cos 0 1
i
j f yR R Rθ

θ θ
θ θ

−    = ≡    −    
. (D.22)

The base structure of (2)O  (defined over the real number field) is then apparent from

(D.21):

{ }
(2, ) (2, ) (2) (2, )

(2) (2, ) .

f

f

O SO R SO

I R SO

= ⊕ ×

≡ ⊕ ×

� � �

�
(D.23)

The first two elements of (D.21) are (2, )SO∈ �  while the second  two are obtained as

the product of a single reflection and a rotation, i.e. these elements are

(2) (2, )fR SO∈ × � , where (2)fR  denotes a reflection in 2 dimensions; the Lie sub-

algebra, (2, )so � , is given by (D.18).

(2, )O �

Consider now (2, )O � , i.e. (D.14) with c ∈� .  In this case, θ  will have both

real and imaginary components.  Substituting iθ θ ϕ→ +  into (D.19) gives for the Lie

group (2, )SO � :
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cos( i ) sin( i ) cos cosh isin sinh sin cosh icos sinh

sin( i ) cos( i ) sin cosh icos sinh cos cosh isin sinh

cos sin cosh isinh
,

sin . cos isinh cosh

θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ
θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ

θ θ ϕ ϕ
θ θ ϕ ϕ

+ − + − − −   
=   + + + −   

− −  =   
  

(D.24)

having used the identities:

cos(i ) cosh

sin(i ) isinh

cos( i ) cos cosh isin sinh

sin( i ) sin cosh icos sinh .

ϕ ϕ
ϕ ϕ

θ ϕ θ ϕ θ ϕ
θ ϕ θ ϕ θ ϕ

=
=

+ = −
+ = +

(D.25)

Therefore the Lie subgroup of (2,C)O  is a 2-parameter group that may be factored as the

product of 2 single parameter groups (2, )SO �  and (2,i)SO , noting that the secondary

element of (D.24):

cosh isinh

isinh cosh

ϕ ϕ
ϕ ϕ

− 
 
 

, (D.26)

is an element of (2,i)SO .  Similarly, this second element of (D.21) factors as:

cos( i ) sin( i ) cos sin cosh isinh

sin( i ) cos( i ) sin cos isinh cosh

θ ϕ θ ϕ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ ϕ ϕ

− + − + − −    =     + − + − −    
, (D.27)

and for the third and fourth elements, respectively:

cos( i ) sin( i ) cos sin cosh isinh

sin( i ) cos( i ) sin cos i sinh cosh

θ ϕ θ ϕ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ ϕ ϕ

− + + − −    =    + +    
, (D.28)

cos( i ) sin( i ) cos sin cosh isinh

sin( i ) cos( i ) sin cos isinh cosh

θ ϕ θ ϕ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ ϕ ϕ

+ +    =    + − + − −    
. (D.29)

Factoring the elements of (2, )O �  in this manner, it is apparent that the group relation

(D.23) generalizes in this case to

(2,C) (2, ) (2,i) (2) (2, ) (2,i)fO SO SO R SO SO= × ⊕ × ×� � , (D.30)

or simply

(2,C) (2, ) (2,i)O O SO= ×� . (D.31)

(1,1)O

For the group (1,1)O  consider

i
j

a b
R

c d

 =  
 

, (D.32)
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but in this case the metric is defined

1 0

0 1ijg
 =  − 

, (D.33)

and the adjoint is not simply the transpose as it was for (2)O , but rather:

k j kj
i i j j

a c
R g R g

b d
′

′ ′ ′

− = =  − 
. (D.34)

The system (D.13) is then

2 2

2 2

1 0

0 1

a b a c a b bd ac

c d b d ac bd d c

−  − −    = =      − − −     
, (D.35)

a system of 3 equations in 4 unknowns, and therefore the solution will again have only 1

independent parameter.  The general solution satisfying (D.35) gives 4 possible elements

for the i
jR  (expressed arbitrarily in terms of the parameter c):

2 2

2 2

2 2

2 2

1 1
, ,

1 1

1 1
, .

1 1

i
j

c c c c
R

c c c c

c c c c

c c c c

   − − −   =    − − −   
   − − − + − −       + − − −    

(D.36)

The first two correspond to transformations with det 1i
jR = + , i.e. “special”

transformations or (1,1)SO , while the second  two correspond to det 1i
jR = − .

(1,1, )O �

To construct the Lie subgroup (1,1, )SO �  of (1,1, )O � , consider an exponential

expansion parametrized in terms of c and the undetermined generator i
jL :

i
jc Li

jR e= . (D.37)

Series expanding both sides in the parameter c about 0c =  to first order gives

0 0

i i i i
j c j j jc c

R R c c L∂ δ
= =

+ = + , (D.38)

and then substituting explicitly into (D.38) for the first solution of (D.36) results in the

system:
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0 1

1 0

f h
c c

j k

   =   
   

, (D.39)

assuming undetermined elements, { , , , }f h j k , for the i
jL .  The  solution is thus:

0 1

1 0
i
jL

 =  
 

. (D.40)

Substituting into (D.37) (series expanding and changing c θ→ ) gives the result:

2 4 3 5

3 5 2 4

2! 4! 3! 5!

3! 5! 2! 4!

cosh sinh1 ... ...

sinh cosh... 1 ...
i
jR

θ θ θ θ

θ θ θ θ

θ θθ
θ θθ

 + + + + + +  = =   + + + + + +   
. (D.41)

For the second  element of (D.36),  (D.38) becomes:

1 0 0 1 1 0

0 1 1 0 0 1

f h
c c

j k

−       + = +       −       
, (D.42)

again showing that no Lie algebra exists here because the solution is “discontinuously”

connected to the identity.  Similar results are obtained for the third and fourth elements of

(D.36), therefore the entire Lie algebra is given by (D.40), corresponding to the Lie

subgroup (D.41) for (1,1, )O � .

Substituting the solution sinhc θ=  into (D.36) gives an alternative expression

for the group elements:

cosh sinh cosh sinh
, ,

sinh cosh sinh cosh

cosh sinh cosh sinh
, .

sinh cosh sinh cosh

i
jR

θ θ θ θ
θ θ θ θ

θ θ θ θ
θ θ θ θ

−   =    −   
− − −    

   −   

(D.43)

For purposes of illustration, the significance of each element in (D.43) may be

understood within the context of a 2-d Minkowski spacetime (Schouten [83], p. 43).

Equation (D.44) provides the (indefinite) metric for this space with coordinates

0 1( , ) ( , )x x ct x≡ , and scalar product:

0 2 1 2( ) ( )i i j
i ijx x g x x x x≡ = − . (D.44)

The first element is a “boost” or transformation to an inertial frame moving with velocity

v in the -x direction ( x−Λ ) (the boost parameter θ  is related to v through:

cosh 1/ 1ϕ γ β= = − ; sinh ; v
cϕ γ β β= = ); the second  is a boost in the +x direction
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followed by both space ( P ) and time (T ) inversions ( xP T +× × Λ ); the third is a boost in

the -x direction followed by a spatial reflection xP −× Λ ; while the fourth is a boost in the

+x direction followed by a time inversion xT +× Λ .

The 4 elements of (D.43) are discontinuous in the sense that any 2 group elements

may not be connected by continuously varying the group parameter θ  - but rather must

be obtained from the following separate discrete transformations: P T× × , P × , T × ,

times an arbitrary boost.  Hence, the base structure of (1,1, )O �  is apparent from the

combinations that must be used to obtain (D.43):

{ }

(1,1, ) (1,1, ) (1,1, )

(1,1, ) (1,1, )

(1,1, ) .

O SO P T SO

P SO T SO

I P T P T SO

= ⊕ × ×
⊕ × ⊕ ×

≡ ⊕ ⊕ ⊕ × ×

� � �

� �

�

(D.45)

An example of a minimal set would therefore be given by:

{ }

cosh sinh 1 0 1 0 1 0
, , ,

sinh cosh 0 1 0 1 0 1

, , , ,

i
j

x

R

P T T P

θ θ
θ θ

− − +        
=         − + −        
≡ Λ ×

(D.46)

assuming θ  arbitrary.

(1,1,C)O

Consider (1,1,C)O , i.e. (D.36) with Cc ∈ . Substituting iθ θ ϕ→ +  into (D.43)

gives the corresponding Lie group element:

cosh( i ) sinh( i ) cosh sinh cos isin

sinh( i ) cosh( i ) sinh cosh i sin cos

θ ϕ θ ϕ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ ϕ ϕ

+ +    =     + +    
, (D.47)

having used the identities:

cosh(i ) cos

sinh(i ) isin

cosh( i ) cosh cos isinh sin

sinh( i ) sinh cos i cosh sin .

ϕ ϕ
ϕ ϕ

θ ϕ θ ϕ θ ϕ
θ ϕ θ ϕ θ ϕ

=
=

+ = +
+ = +

(D.48)



179

Therefore the Lie subgroup of (1,1,C)O  is a 2-parameter group that may be factored as

the product of 2 single parameter groups (1,1, )SO �  and (1,1,i)SO , noting that the

secondary element of (D.47):

cos i sin

isin cos

ϕ ϕ
ϕ ϕ

 
 
 

, (D.49)

gives an element of (1,1,i)SO .  Similarly, the second  element of (D.43) factors as:

cosh( i ) sinh( i ) cosh sinh cos isin

sinh( i ) cosh( i ) sinh cosh isin cos

θ ϕ θ ϕ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ ϕ ϕ

− + + −    =     + − + −    
,(D.50)

and for the third and fourth elements, respectively:

cosh( i ) sinh( i ) cosh sinh cos isin

sinh( i ) cosh( i ) sinh cosh isin cos

θ ϕ θ ϕ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ ϕ ϕ

− + − + − −    =     + +    
, (D.51)

cosh( i ) sinh( i ) cosh sinh cos isin

sinh( i ) cosh( i ) sinh cosh isin cos

θ ϕ θ ϕ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ ϕ ϕ

+ − + −    =     + − + −    
, (D.52)

Hence, it is apparent that the group relation (D.45) generalizes in this case to

(1,1,C) (1,1, ) (1,1,i)O O SO= ×� . (D.53)
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Appendix E:  Mathematica Calculations - Chapter 4

Conformal Transformations

Initialize MathTensor

Conformal Transformation of the Metric:

Conformal Transformation of Connection:

Make Rules to Express in Normal Coordinates:

Apply this to the Riemann Tensor:
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Construct the Ricci Tensor:

Apply this to Ricci Tensor:
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Ricci Conformal Rule2:

Construct the Ricci Scalar:
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Invariance of the Weyl Tensor

These 2 Results are the Same:

Derivation of the Conformal Field Equations

Conformal Quadratic Term:
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A Topological-Type term based on the Weyl Tensor:

Expand Levi-Civita product:

Expand Levi-Civita product:

Perform the variation:

Remove derivatives from gδ  and factor det g:

Remove derivatives from gδ :

Factor out gδ :

Substitute in terms of the Weyl tensor:
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Define the trace - free property of Conformal tensor:

Define Pirani’s Conformal Identity:

Use Pirani’s Identity:

This is the final result:

Check That it is Traceless:
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Input the Mannheim - Kazanas Result:

This is Mannheim (Open Questions in ...) - Eq. (15):

Check That (MK) is Traceless:
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Tensor Calculations for the Conformal Spherical Metric

Evaluate Ordinary Derivatives:

Load the File:

Display the Metric ("4" Labels the time coordinate):

Here are the non-zero Christoffel Symbols (Schwarzschild):
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Display the Ricci Tensor :

Display the Ricci Scalar:

Non-zero Components of the Weyl Tensor :
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Substitute into the Conformal Field Equation:
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Appendix F:  Newtonian Phase-Plane Analysis

As discussed earlier in Chapter 5, the standard analysis of the Newtonian orbital

dynamics is based on the change of independent variable, t → ϕ , for the purpose of

finding a closed form solution describing the orbital geometry.  But a phase-plane

analysis of the differential equations using time as the independent variable is no more

complicated in principle than using ϕ .  Furthermore, there are results shared by the

relativistic case (discussed in Section VI) that are clarified in this analysis.

To begin, consider the Newtonian limit of the equations derived in Section II.

The effective potential/(unit rest energy) is listed in (5.14), and is defined as $Veff

2  which

gives the proper Newtonian limit for $Veff  (to within an additive constant) in the limit of

large r.  As a result, the Newtonian limit of (5.14) is given by

$ ( ) / / /
/

Veff x x x x x= − + − ≈ − +1 2 1 2 42 3 1 2 2σ σ , (F.1)

which differs from the standard Newtonian form by the addition of an additive constant

(corresponding to the rest mass energy of m0 ).  The standard Newtonian effective

potential energy is chosen to be zero at infinity which gives the usual expression:

$ / /Veff x x= −2 4 2σ , (F.2)

compared to the relativistic limit where the energy at infinity corresponds to the rest mass

energy.  But this additive constant is of little consequence insofar as the dynamics are

concerned, and so we adopt (F.2) for the remaining discussion.

The corresponding Newtonian expression for (5.44) is derived using the standard

Lagrangian and Hamiltonian results:

( / ) &

$ $r c x E Vs effx2 2 42= − , (F.3)

where $Veff  is given by (F.2) and x r rs= / .  Although this choice of units seems odd at

first, the most straightforward comparison with the relativistic case is obtained in this

form.  As a check, (F.3) reduces to the equation (after substituting (5.2), (F.2), and then

(5.13)):

( / ) ( / ) [ ]du dt u J m u u u bu
2 4 2 2

0
22= − − − , (F.4)
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where u r= 1/  and u GMm J0
2 2= /  gives the standard radius of a circular orbit.  The

constant: b b mE Ju
2 2 21 2≡ =/ / , expresses the impact parameter (for a particle

approaching from infinity) in terms of E and J.  The zeroes of (F.4) give the standard

turning points of the effective potential (aside from u = 0 ).  Furthermore, substituting

u u= ( )ϕ  and then (5.6) into (F.4) (the Newtonian expression for J is identical in form to

the relativistic case) leads to the standard second order differential equation that is

commonly evaluated for the analysis of these orbits.

Continuing with the analysis, differentiating (F.3) gives the dimensionless phase-

plane equations expressed using t as the independent variable:

& [ $ )] /

& ( $ ) / .

/x y x c E x x r

y x c x x E r

s

s

= = ± + −

= − − −

2 2 1 2

3 2 2 2

4 2 2

3 5 8 2

σ σ σ
σ σ σ

(F.5)

Solving simultaneously, & &x y= = 0  for $E2  and x then gives the two fixed points:

{ ; $ / }x E x1 24 0= = − =σ σ and . (F.6)

The first gives the standard results: a center node corresponding to a Newtonian circular

orbit with radius 1r  and energy given by

x r r J GMm

E E m GMm J

s1 1
2 2

24 2

= ⇒ = =

= − ⇒ = −

σ σ
σ

/ /

$ / ( / ) / .
(F.7)

The second fixed point at infinity simply expresses the fact that it takes an infinite

amount of time for the orbiting particle, m, to reach the turning point at infinity (in the

case of parabolic and hyperbolic orbits) - a fixed point that is shared in the relativistic

orbital dynamics.  For comparison with the relativistic phase-plane results the Newtonian

phase diagram for (F.5) is shown in Figure 35.
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Figure 35. Newtonian Phase-Plane Diagram with t as the Independent Variable (σ = 1)
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Appendix G:  Miscellaneous Calculations – Chapter’s 5 and 6

An important analysis tool will be Mathematica’s Implicit Plotting routines

(ImplicitPlot). There are several ways to specify a curve in the plane using

Mathematica. A different plotting function is used for each of these methods.

The most basic graphs of functions are plotted using the Plot routine. Curves

given parametrically are plotted using the ParametricPlot routine. However,

ImplicitPlot plots curves that are given implicitly as the solutions to a specified

set of equations.

The function, ImplicitPlot, can use two methods to plot the solution to the given

equations.  The method that is used is determined by the form of the variable

ranges given. One method uses the Solve routine to find solutions to the equation

at each point in the  x range.  It avoids singular points, plotting to within

machine precision of those points, to generate an apparently smooth graph. This

is the method used if only the range for x is specified.  The second method treats

the equation as a function in 3-d space and generates a contour of the equation

cutting through the plane wherever z equals zero. This method is faster than the

Solve method and handles a greater variety of cases, but may generate rougher

graphs, especially around singularities or intersections of the curve.  This

method is used if the ranges for both x and y are specified.

Load the Libraries:

Schwarzschild Calculations and Graphical Analysis

Schwarzschild Equatorial Algebra:
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Schwarzschild Proper Time Algebra:

Schwarzschild Coordinate Time Algebra:

:
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:

:

:

:

:

:

:

:
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:
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:

Coordinate Time Phase-Plane Equations:

Proper Time Phase-Plane Equations:
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Reissner-Nordstrom Calculations and Graphical Analysis

Effective Potential Equations: let 

Critical Points:
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The second derivative - Inflection Points:

Schwarzschild and RN Plots:
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Effective Potential Descriminant:
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Plot the roots:
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Linear Stability :
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Find intersection point of the :
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Linear Stability :

Series Expand :

Series Expand :

Series Expand :

Series Expand :
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Series Expand :
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Series Expand :

A similar analysis has been considered for the other parameter values:

Linear Stability :

Linear Stability :

Linear Stability :

Linear Stability :

Linear Stability :

Linear Stability :

Linear Stability 2.1λ = :

This is Brigman’s Center :
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This gives 

Correspondingly, this gives 2ω− :

This is the usual Reissner-Nordström Center node  *
2x :
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D

Dailey, vi

Davila, vi

Dean, i, vi

Debney, 5, 6, 61

descriminant, 96, 97

DeWitt, vi
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