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Abstract

Variational Results and Solutions in Gauge Gravity and a Bifurcation
Analysis of Black Hole Orbital Dynamics

Bruce H. Dean

An analysis of all known spherically symmetric solutions to the field equations
originating from the Riemann tensor quadratic curvature Lagrangian is presented. A new
exact solution is found for the field equation originating from the “energy-momentum”
equation of the gauge gravity theory. Imposing equivalence between the Palatini and
standard variational field equations yields an algebraic condition that restricts the number
spacetime solutions to gauge gravity. A class of spherically symmetric solutions to the
conformally invariant theory of gravitation is shown to be shared by the gauge gravity
field equations. An analysis of a spherically symmetric solution to the conformal gravity
field equations is also presented.

Point particle orbital dynamics in both the Schwarzschild and Reissner-Nordstrom
black hole spacetimes are analyzed as 2-d conservative bifurcation phenomena. The
classification is based on a study of coalescing fixed points and the parameter values at
which these bifurcations occur. Physically distinct behaviors are separated by bifurcation
points while dynamically distinct cases are divided into various regions of the phase-
plane by the separatrix. The Schwarzschild dynamics exhibit both saddle-center and
transcritical bifurcation points and a calculation of periastron precession is presented that
incorporates a phase-plane analysis of the relativistic equations of motion. Level curves
of constant energy are illustrated for both timelike and null geodesics and a phase-plane
analysis of dynamical invariance between the proper and coordinate time reference
frames is discussed. The Reissner-Nordstrom dynamics exhibit saddle-center,
transcritical, pseudo-transcritical, and additional bifurcations that combine all three
previous bifurcations in various combinations. Periastron precession in the Reissner-
Nordstrém spacetime is analyzed using the phase-plane and bifurcation techniques and
extended to include a bifurcation point of the dynamics. A numerical solution at these
parameter values illustrates that such orbits typically yield a much larger precession value
compared to the standard value for timelike precession. The “acausal’ geodesics
considered by Brigman are also discussed and their precession value is calculated.
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Chapter 1 Introduction

Einstein’s theory of general relativity [1] is a classical theory of the gravitational
field. A very compelling aspect of the theory is that it is expressible within the
mathematical framework of Riemannian geometry. As a result, the Newtonian concepts
associated with gravitational forces are replaced by more abstract ideas developed from
analysis on manifolds. The power in this identification is evidenced by the range of new
and subtle physical phenomena that are predicted by Einstein’s theory — e.g., light
bending, periastron precession, red shift, and time delay of radar signals - phenomena that
might otherwise have gone unnoticed or unexplained had it not been for the subsequent
geometric analogies drawn between space, time, and curved manifolds. But the pattern in
these developments is not altogether new - physicists have always benefited from more
abstract representations of their concepts and theories. The hope is that by translating
familiar ideas into a more abstract setting that new relations or physical consequences of
a given theory will be made immediately obvious. Therefore, it comes as no surprise that
general relativity itself has been analyzed and recast into a variety of different forms in
attempts to generalize it. The earliest attempts along these lines were made by Einstein
himself [2].

Part |. Gauge Gravity

Of the many approaches that have been considered in attempts to generalize
Einstein’s theory, probably the simplest is to start from the alternative scalar invariants
that may be used to base an action principle. Since Einstein’s theory is already linear in
the Ricci scalar - a natural choice would seem to be the quadratic curvature Lagrangians
that may be formed by contracting the Riemann tensor onto itself. The combinations that

may be considered are given ®?, R, R, and R%,, R%*% (Ris the Ricci scalar,

R, is the Ricci tensor, an®”,,, is the Riemann tensor). As a result, there have been

174 v
many investigations that begin with these quadratic curvature Lagrangians and various
linear combinations of them as the starting point for alternative theories of gravitation.
The original motivation for such work came from the desire to unify gravitation with

electromagnetism, and also to find a more general algebraic starting point from which to



base Einstein’s theory. The earliest such attempts were made by Weyl [3], Pauli [4],

Eddington [5], and Lanczos [6]. Eddington considered the LagrangRp$” and

R~ R%¥ , while Weyl and Lanczos considered these and RfSo Additional analysis

ouv
was later given by Gregory [7], Buchdahl [8], Arnowitt [9], Stephenson [10], Kilmister
[11], and Thompson [12]. The work of Lanczos was especially important in that he
showed a certain linear combination of these Lagrangians gives an identity with respect
to variations of the metric, i.e., the Gauss-Bonnet topological invariant. As a result, the
number of independent quadratic curvature contractions is reduced from three to two.

A secondary motivation for considering the quadratic curvature Lagrangians came
from the realization that the gravitational field should be regarded as an interaction in the
same sense as the other fundamental interactions of nature. The hope was that by
imitating the mathematical form of Yang-Mills gauge theory that gravitation could be
derived in a framework that would suggest an obvious avenue towards unification with
the other fundamental interactions. Therefore, by following a parallel with Yang-Mills
gauge theory, it was believed that general relativity could be recast as a gauge theory
based on the Lorentz group and that gravitation would arise as an interaction manifested
through the local Lorentz invariance of the theory. This approach was first considered by
Utiyama [13] based on the Lorentz group and then later extended by Kibble [14] to
include the full inhomogeneous Lorentz group. But these investigations did not consider
a quadratic curvature Lagrangian in their approach and even Yang [15] commented later
that Utiyama’s investigation was an unnatural interpretation of gauge theory. The most
direct algebraic parallel with Yang-Mills gauge theory required the Lagrangian to be

guadratic in the Riemann tensor.

Lichnerowicz [16] was the first to consider the field equatidigR”, , =0, by

ouv
themselves, as the basis for a theory of gravitation. These field equations originate from
the Riemann tensor quadratic Lagrangian under the assumption that the connection is in
Christoffel form after a Palatini variational procedure is applied with respect to the
connection. Kilmister and Newman [17] also considered this equation as the basis for a
theory of gravitation and suggested that it is analogous to Maxwell's equations for
electromagnetism. But the first real identification with Yang-Mills gauge theory was



made by Loos-Treat [18] and Treat [19]. However, Loos and Treat did not consider it

seriously as a generalization of Einstein’s theory, but rather as a mathematical
consequence of the dynamical equivalence between the Yang-Mills and gravitational
fields. Subsequently, Yang [15] suggested this theory and it was also considered by
Camenzind [20] and Shankar [21] (see also Ref’s [22]). But in the subsequent literature,

the equation, R”,, =0, taken by itself, became known as “Yang's gauge theory of

ouv
gravity,” or “gauge gravity” for short, although Yang was one of the last to suggest it.

But many problems surfaced in this approach. Particularly troublesome were the
appearance of multiple nonphysical solutions and the fact that the field equations involve
higher than second derivatives of the metric. The appearance of extraneous solutions was
considered a nuisance by Pavelle [23], Thompson [24], Ni [25], and Fairchild [26], who
cataloged several of the spherically symmetric cases and discussed their nonphysical
nature. Hayashi [27] has considered the consequences of the theory under the assumption
of a non-metric connection and concluded that the theory must very likely be metric to be
consistent, although the field equations themselves originate by treating the metric and
connection as independent quantities. Subsequent analysis on the linearized version of
the theory was given by Aragone and Restuccia [28] and the PPN formalism (post
parametrized Newtonian formalism [29]) was applied to the theory by Camenzind [30].

In summary, the general consensus was not in favor of a sound physical theory.

In subsequent work there were efforts to show that the gauge gravity theory might
still be viable physically by finding a constraint to eliminate the nonphysical solutions.
The possibility of finding such a constraint was initially suggested by Pavelle [31].
Thompson [32] also suggested this possibility but was more specific by hinting that the

identity, R R}, =0, may be helpful in eliminating all solutions that are not Einstein

poluv
spaces. But no further analysis was given by Thompson although he did comment that
the Petrov classification of spaces might be restricted by an unspecified condition related
to this identity. In another attempt to eliminate all solutions that are not Einstein spaces,
Fairchild [33] considered the field equations that originate by variation with respect to the

metric, R’ , R°,,4-%9,,R’, %R, =0, in addition to the gauge gravity equations,

0,R%, =0, in an attempt to eliminate the extraneous solutions. But this approach

auv



failed as aresult of the fact that both sets of field equations shared a class of non-physical
solutions that are conformally flat and also have a vanishing Ricci scalar, i.e., they satisfy
Nordstréom'’s field equations [34] (as discussed in detail in Chapter 3). In a more recent
paper, Guilfoyle and Nolan [35] have reconsidered the identity suggested by Thompson,

R R},=0, which they have relabeled as the “curvature orthogonality condition

poluv
(COC).” But apparently, these authors have misinterpreted this condition as making a
stronger statement on the classification of spacetime solutions of the gauge gravity field
equations. Their analysis considers the various Petrov types of spacetimes allowed by the
COC according to a Segré classification of the Ricci tensor. But in fact this condition
says nothing more thai® =0, since the equation is an identity. This detail is discussed

at greater length in Chapter 3.

Later on, some clarification with regard to the extraneous solutions was given by
Havas [36] who showed that any set of field equations involving higher than second order
derivatives of the metric must either give multiple spherically symmetric solutions or
have a bad Newtonian limit. But even with these results, there was sufficient interest in
the theory that Baekler and Yasskin [37] considered an analysis that gives a comparison

of the spherically symmetric solutions to the field equationsR*,,, =0, to those of the

ouv
quadratic curvature generalization based on Poincaré invariance proposed by Heyl, et. al.
[38] (see also Ref's [39]). More recent work stemming from the original gauge gravity
theory has been considered in attempts to quantize the gravitational field [40] and is still
an active area of investigation even at the classical level (see [35] and the other
investigations related to the gauge gravity theory in [41]).

In parting ways with the original gauge gravity approach, it was noted by
Fairchild [42] that the analogies drawn between the Yang-Mills gauge theory and
gravitation as a gauge theory are strictly kinematic. Therefore, in an attempt to bring
gravitation into strictly Yang-Mills forrﬁ, Fairchild has considered a Lagrangian that is
closely related to the Lagrangian considered by Leutwyler [43] in his investigation of the

generally covariant Dirac equation. Additional analysis on the equivalence between

f many authors have claimed that their Lagrangians or field equations are the most anal ogous to the Yang-
Millstheory. Seee.g., Gronwald and Heyl [89].



solutions of this theory and Einstein’s theory were given by Debney, Fairchild, and
Siklos [44]. They showed that the only vacuum solutions of the theory are also those of
Einstein’s. A further investigation is given by Yasskin [45] who considers the Newtonian
limit and reports that the spatially flat Friedmann-Robertson-Walker solution of
Einstein’s theory is an exact solution of Fairchild’s theory.

Although the original goals of the quadratic curvature generalizations have not
been fully realized, the formalism that was developed from such investigations has
proven general enough to suggest alternative approaches toward quantization of the
gravitational field (although very few of these approaches are tied directly to the original
gauge gravity theory). Indeed, there are many investigations underway toward
guantization including the superstring-theoretic approach [46], the connection dynamics
proposal [47], non-commutative geometries [48], generalized gauge-theoretic
formulations [49], quantization of topologies [50], topological geons [51], gravity as an
induced phenomenon [52], and so on (see also Burton and Mann [53] for a discussion of
the recent literature). In each of these approaches a fundamental role has been given to
the variational procedure - particularly to the Palatini approach in which the metric and
connection are treated as independent dynamical variables. The advantages in this
formalism were appreciated early on from the parallels made with gauge theory and
guadratic curvature attempts at unification. As a result of the early work on quadratic
curvature generalizations, the mathematical groundwork for the Palatini procedure has
been developed and explored in considerable detail, but there are still details of the
procedure that have not been fully investigated, at least insofar as the gauge gravity field
equations are concerned.

Therefore, one goal of this thesis has been to reconsider earlier work on the gauge
gravity theory to show that an additional algebraic constraint arises by imposing
equivalence between the standard and Palatini variational procedures. A basic result is
that this constraint gives additional insight into the classical gauge theoretic structure of
gravitation and eliminates many (but not all) of the nonphysical solutions to the gauge
gravity theory. The basis for the analysis is given by noting that the Einstein-Hilbert
action is special in that its variation gives identical results using either the standard or

Palatini variational procedures. However, this “symmetry” no longer applies when the



action is taken in quadratic form. As aresult of imposing this condition onto the gauge

gravity field equations, an auxiliary algebraic condition is obtained that restricts the class

of spacetime solutions to the field equations. This condition is shown to be similar to a
condition that was proven earlier using the Segré classification of the Ricci tensor by
Debney, Fairchild, and Siklos [44] which has been used by these authors to eliminate the
“non-Einsteinian” solutions of Fairchild’s theory [42] (as discussed above).

Background for the analysis is given in Chapters 2 and 3. In Chapter 2, the field
equations that originate from the Einstein-Hilbert action are derived using the Palatini
variational procedure from a slightly more general viewpoint than what is usually
discussed in the literature. The analysis considers the possibility for both non-vanishing
covariant derivative of the metric and also by assuming a non-symmetric connection, i.e.,

Schouten’sL,. The goal in this approach is to not only provide an introduction to the

Palatini variational procedure used in Chapter 3, but also to make as many properties as
possible follow from the variational procedure itself, while minimizing the number of
additional constraints that are imposed on the variations. As a result, the relationship that
exists between the metric and connection is determined by the secondary set of field
equations in the Palatini variation with respect to the connection. For the Einstein-Hilbert
action this relationship is expressed by a Lemma that is discussed in Chapter 2. A similar
result has also been obtained by Papapetrou and Stachel [54] who have considered the
torsion as an independent variational parameter. In the following two subsections of
Chapter 2, the Schwarzschild and Reissner-Nordstrom solutions are then derived as the
basis for the dynamical analysis presented in Chapters 5 and 6.

In the early sections of Chapter 3, the variational formulation of Yang-Mills
gauge theory is reviewed to motivate the gauge theory kinematics based on the Lorentz
group. In the following subsection, the gauge gravity field equations are derived and then
the spherically symmetric solution structure of the field equations is presented in detail in
the sub-subsection entitled “Solutions.” An additional unreported solution to the free-
field “energy momentum” equations is presented in addition to analysis on the
conformally flat solutions that are shared by Nordstrom’s theory [34]. Finally, the
analysis for the additional algebraic constraints is presented in the final sub-subsection of
Chapter 3.



In Chapter 4, an evaluation of the spherically symmetric solution structure for
another attempted generalization of Einstein’s theory is presented. The theory was
proposed long ago by Weyl [55] as a generalization based on conformal invariance but
has been more recently considered by Mannheim and Kazanas [56, 57] to explain the
rotation curves of galaxies without the need for postulating the existence of dark matter.
As a consequence of basing a theory on conformal invariance the action considered for
the theory must also be quadratic in the curvature tensors, so there are features of the
analysis that are shared by the quadratic curvature Lagrangians discussed in Chapter 3.
Therefore, the purpose of this Chapter is to emphasize this similarity and to show that a
class of conformally flat solutions to the gauge gravity field equations, namely those also

satisfying Nordstrom'’s theory [34] are shared by conformal gravity.

Part II. Dynamics

In the second part of the thesis (Chapters 5 and 6), the orbital dynamics of point
particles in the Schwarzschild and Reissner-Nordstrdm spacetimes are investigated using
methods from dynamical systems theory. The motivation for considering this analysis is
to gain additional insight into the physical and analytic structure of the solutions. 1t is a
fact that the underlying mathematical structure for an arbitrary set of equations is often
more clearly elucidated by applying techniques developed from the study of dynamical
systems (for instance, Marsden [58]) — particularly in those cases where a direct physical
interpretation is not always of central importance (e.g., Korteweg-deVries [59]; Hénon-
Heiles [60], etc.). Therefore, even in dynamical systems that are considered to be well
understood, additional qualitative information or obscure details of a given solution may
sometimes be more clearly conveyed or classified by applying newer and more modern
techniques of analysis. This is the goal in the second part of the thesis.

A great deal is known about the general relativistic orbital dynamics. Indeed, the
earliest predictions of Einstein’s theory concerned the bending of light and the perihelion
precession of Mercury. Motivated by these and other solar system observations - the
Schwarzschild, Reissner-Nordstrom, Kerr, and Kerr-Newman orbital dynamics and their
analytic structure have been analyzed extensively in the literature (e.g., Darwin [61];
Kruskal [62]; Boyer and Lindquist [63]; Graves and Brill [64]; Carter [65]; Misner,



Thorne, and Wheeler [66]; Sharp [67], and Chandrasekhar [68]). The most common
method of dynamical analysis has been based on perturbative techniques or numerical
integration [69]. However, exact solutions have been discussed by many authors for
circular orbits, light rays, and radial motion - see e.g., Chandrasekhar [68]. But
surprisingly, given that the general relativistic equations of motion are integrable, an
investigation of these dynamics that utilizes the phase-plane and bifurcation techniques in
combination with a linear stability analysis has not appeared widely in the literature.
However, earlier work by Szydlowski, et. al. [70] and Collins [71] considers an
application of the phase-plane method to study the stability properties of cosmological
solutions. A similar analysis has also been discussed by Khalatnikov [72]. A more
recent phase-plane analysis of the Friedmann-Robertson-Walker cosmology in Brans-
Dicke gravity is considered in Ref. [73]. Other recent work using methods from
dynamical systems theory has been concerned with the detection and analysis of chaotic
orbits [74]. In contrast to these studies the emphasis of the analysis considered here will
be an application of the bifurcation and linear stability techniques to classify the stability
properties of the orbits - particularly to the Reissner-Nordstrom solution. Specifically,
the goal in this analysis is to solve the bifurcation problem for the Reissner-Nordstrom
system. That is — to present a summary of the phase-plane topological structure based on
a study of coalescing fixed points and identify the parameter values at which these
bifurcations occur. The Schwarzschild dynamics have been analyzed with a pedagogical
emphasis using the phase-plane and bifurcation techniques in [75] (thesis Chapter 5); the
Reissner-Nordstrém periastron advance is considered in [76] (thesis Chapter 6).
Comparatively speaking, the Reissner-Nordstrom orbital dynamics have received
relatively little attention in the literature compared to the corresponding Schwarzschild,
Kerr, or Kerr-Newman dynamics. Probably the reason for this omission is due to the
assumption that a black hole possessing a sizable charge would be rapidly neutralized by
the inflow of oppositely charged particles. As a result, the solution has not often been
considered seriously as a base model for astrophysical processes. But the work of
Eddington [77] has shown that stars are positively charged and that electric fields play an

essential role in stellar structure. Furthermore, the Reissner-Nordstrom solution could



have added physical relevance if primordial black holes are proven to exist,Jr since then it
Is conceivable that a sizable charge could accumulate without neutralization by
surrounding matter. But experimental evidence for such objects is questionable (see e.g.
Ohanian and Ruffini [78], p. 487-489).

As an application of Eddington’'s model, Harrison [79] has considered order of
magnitude calculations that place an upper bound on the size of such “gravity induced”
charge and discusses the physical mechanism for its production within the stellar interior.
The mechanism is based on the relative mass difference between the proton and electron.
The reasoning is as follows: within a star, proton and electron gases contribute equally to
the total pressure gradient. But gravity acts mainly on the relatively massive protons, and
therefore an electric field mediates between the electron and proton gases. In effect,
electrons have velocities greatly exceeding escape velocity, and therefore some electrons
escape leaving the star positively charged with an electric field that retains the remaining
electrons. However, from the cosmic censorship conjecture (discussed in more detail in
Chapter 2), an upper bound is placed on the charge contribution to the total mass of the
Reissner-Nordstrom black hole. Therefore, at certain parameter values the dynamics may
be implausible physically, but are nevertheless dynamical consequences of the Reissner-
Nordstrom solution, albeit only mathematical. The viewpoint adopted here is non-
committal on the physical existence of such solutions — the full range of parameter values
are simply explored as dynamical possibilities (Chapter 6), not necessarily physical ones.

The contents of Chapters 5 and 6 are organized as follows: in Chapter 5, the
Schwarzschild orbital dynamics are first analyzed using the phase-plane and bifurcation
techniques. The purpose of this Chapter is to setup the analysis that will be applied to the
Reissner-Nordstrom dynamics in Chapter 6. Although the Schwarzschild orbital
dynamics are well understood and have been analyzed using a variety methods in the
literature, there are still qualitatively new results that have not been reported for the
Schwarzschild dynamics. Essentially, these results correspond to the limitations that are
placed upon the types of orbits that may exist before an unstable orbit is reached and the
kinematic classification of the separatrices as distinct unstable orbits. In essence, the

T | thank H. A. Weldon for this comment.
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separatrix gives a graphic representation of the critical relationship that exists between
energy and angular momentum at the unstable orbital radius. The separatrices
themselves are therefore classified kinematically as unstable hyperbolic, parabolic, and
elliptical orbits. Furthermore, the Schwarzschild orbital dynamics may be interpreted and
analyzed as a conservative 2-d bifurcation phenomenon which summarizes the range of
orbits that may occur as the energy and angular momentum of the system are varied. As
a result, the bifurcation diagram divides the dynamics into physically distinct regions in
contrast to the phase-plane that is divided into dynamically distinct regions.

In a later Section of Chapter 5, a phase-plane analysis of dynamical invariance
between the coordinate and proper time reference frames is given. Although the
dynamical structure (i.e. the effective potential) is demonstrated to be invariant between
the two reference frames, the phase diagrams in each case are not identical. This is due
to the existence of an additional phase-plane fixed point that appears in the coordinate
reference frame at the event horizon. This fixed point is obviously coordinate dependent,
but must exist to explain the apparent “slowing down” of objects (and redshift of signals)
approaching the horizon boundary as seen by an observer in the coordinate reference
frame. For comparison, the corresponding Newtonian phase-plane results are considered
in an Appendix. Not only does this analysis complement the discussion of the
Schwarzschild dynamics considered in Chapter 5, but it is of pedagogical value to show
that an analysis of Newtonian orbits using time as an independent variable is just as
instructive and no more complicated in principle than using the equatorial angle
(however, the opposite is true when using the standard methods of analysis, e.g. [80]]).
Finally, the phase-plane analysis is applied to the kinematics of light rays in the
Schwarzschild black hole spacetime. The standard results are discussed and then
compared with the phase-plane results. The added significance of the photon orbits in the
phase-plane context is that the equilibrium points of the differential equations exhibit a
transcritical bifurcation (i.e. an exchange in stability) at these parameter values.

As a result of the spherical symmetry of the Reissner-Nordstrom solution there
are many similarities shared with the corresponding Schwarzschild analysis of Chapter 5.
However, in the Reissner-Nordstrom case there are three fixed points compared to only

two in the Schwarzschild example. As a result, the dynamics are considerably more
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complex since the parameter space is two dimensional compared to only one dimensional

for the Schwarzschild case. These dynamics are presented in Chapter 6 and are organized

as follows: the phase-plane equations and fixed points for the system are first derived.

The Reissner-Nordstrom parameter space is then presented which is an important
diagrammatic tool in the subsequent dynamical classification. The parameter space
organizes and locates the bifurcations that are classified in the following sub-section
entitled Bifurcation Analysis. The discussion on the stability properties of the orbits is
augmented with exact phase-diagrams that illustrate the underlying “global” phase-plane
structure of the system at selected parameter values. In the following sub-section the
separatrix structure of the Reissner-Nordstrém phase diagrams is discussed as a
straightforward generalization of the Schwarzschild case.

As a consequence of the additional dynamical complexity associated with the
Reissner-Nordstrom system, there are multiple periodic solutions that yield orbits with
finite precession values. An analysis and comparison of several such orbits is given in
addition to the standard precession for timelike orbits. A linear stability phase-plane
calculation of periastron advance is presented in the sub-section eR&tiedtron
Precession and then extended to (a) precession about a bifurcation point of the dynamics
and (b) precession about a secondary center node fixed point that exists as a consequence
of the black hole charge. The bifurcation point considered in (a) has not been reported in
the literature and is given by parameter values that would presumably correspond to
timelike orbits about a naked singularity, although it is not expected that any physical
interpretation can be given for these cases. The “acausal’ geodesics discussed by
Brigman [81] are identified with (b), which is a center node fixed point positioned

between the outer horizom,, and the interior horizon;_. Finally, the photon orbits

give a special case of the dynamics as a transcritical bifurcation point (as in the

Schwarzschild case) and are presented in the final sub-section arngtieRays.
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Chapter 2 Field Equationsand Variational Formalism

Einstein-Hilbert

The goal in the first section of this Chapter is to not only provide background for
the Palatini procedure used in Chapter 3, but to make as many properties as possible
follow from the variational procedure, while minimizing the number of additional
congtraints that are imposed on the variations themselves. Therefore, we consider the
field equations that result from a variational procedure applied to the Einstein-Hilbert
action in which the connection is neither metric or symmetric, and no functional relation
Is assumed to exist between the metric and connection.

The fact that the spacetime manifold is defined with a connection that has no
assumed symmetries gives the L, geometric manifold discussed by Schouten. But the

addition of a symmetric metric tensor, g, , is necessary to define inner products between

vector and tensor quantities as well as defining the length element (the addition of the

metric into the L, is discussed by Heyl [82], i.e, the (L4,g)).Jr Similar field equations

have been considered by Papapetrou and Stachel [54] and Burton and Mann [54] who
have assumed a symmetric connection and include all terms in the action that are at most
quadratic in derivatives and/or connection variables. But here a simpler case is
considered but with the added generality of a non-symmetric connection to explore the
relationship that exists between the metric and connection, particularly in a spacetime
originating from the Einstein-Hilbert action. In the Palatini style variation this
relationship is determined by the secondary field equations that are obtained by variation
with respect to the connection. A simpler calculation that is related to this approach was
considered previously by Stephenson [10] for the case that the connection is symmetric
and is discussed in greater detail in Chapter 3.

There are essentially two variational methods that may be used to calculate the
field equations of general relativity. In the first (labeled as the “standard” variational

f | thank Richard Treat for this clarifying comment onthe (L,, g).
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procedure) the metric is the sole variational parameter of the theory and is implied by the
condition that the connection be metric’ (Schouten [83], p. 132):
0,9, =0. (2.1)

The solution to (2.1) is given by the Christoffel form:
erE%gJ/‘ (‘?yg/lv +dvg/1y _d/lgyv) ’ (22)
when the connection is symmetric (i.e., I'{,,; =0), and is derived as follows - expand the

covariant derivative in (2.1) and then cyclically permute indices to obtain the linear

combination:
— N — A A
|:|p gyv + Dy gvp - |:|v gpy =0= dp gyv - ryp g/lv - rvp gy/l (2 3)
+ ‘?y gvp - rSy g/\p - r/:w gv/l _dv gpy + r/:w g/ly + r;‘w gp/l )
Rewriting this result gives
zrz‘yp) g/iv = o‘,p gyv +‘?y gvp - ‘?v gpy +T:v gp/l +T;?v g/\y’ (24)
where the torsion tensor is defined: ¥
T, =2r, =0, -r,. (2.5)

If the connection is symmetric then (2.4) simplifies to the Christoffel form (2.2).
As aresult of (2.2), the corresponding Einstein free-field equations are obtained

from 0S,, /09" =0, using the standard variational procedure (Appendix A):
R,-39,R=00 R,=0; yv,etc.=0,123, (2.6)
where S, is the Einstein-Hilbert action (the constant factor is required for Newtonian

correspondence which is discussed in the next section; G is Newton's gravitational

constantc is the speed of light):

1 ER 1 1
Salg] = Wfd4q 9°9”R,, = Wfd4q g’R. (2.7)

f in the literature there are widely varying labels attached to the condition that [1,g,, = 0; e.g., metricity,

Riemann condition, metric compatibility, Einstein-Hilbert congraint, etc., but we shall adopt the
conventions and terminology of Schouten — that the connection is metric with respecyfQ .
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In (2.7), q denote generalized coordinates, g,, isthe metric, g=-detg,,, and R, is
the Ricci tensor:

R,=R%, =0,[5 -0,T¢ + r;’prfw —r;’vr;p, (2.8)

opv
which is a derived quantity from the transvection’ (see Schouten [83], p. 8 and 14) of the
Riemann curvature tensor:

R?, =9,T5 -9,T%, +r§yrfw —r;’vrfw, (2.9)

auv
[note: the signature adopted here is diag 77, = (+1,-1,-1,-1)].

The second variational procedure is given by the Palatini approach which assumes
no a-priori relationship between the metric and connection. As a result, a more subtle
role is played in the Palatini variation — for in addition to the field equations (2.6)

obtained by variation with respect &, , the variation with respect tal';, yields the

v
metric condition (2.1) as a field equation extremizing the Einstein-Hilbert action. It is
interesting to note that Einstein [84] was apparently the first to have treated the
connection and metric as independent variational parameters and that Palatini never
actually used this procedure (see Heyl, et. al [85] and Ref. [84]).

The fact that this seemingly independent approach confirms that the connection is
metric has been viewed by many as a kind of “proof’ of the validity of the Einstein-
Hilbert action as a starting point for the correct theory of gravitation. But the Palatini
procedure also suggests a natural starting point for generalizations of Einstein’s theory by
relaxing the constraint (2.1). In fact, it has been noted long ago by Schrédinger [86] and
more recently by Hehl [87] that in a generalized theory of gravitation one expects (2.2) to
be modified in some manner that is typically not obvious. Indeed, the Palatini approach
provides the starting point for most generalized (quantum) theories of gravity mentioned
in the Introduction and has also been considered in other classical generalizations based

i Note: the conventions and notation used here will generally follow Schouten but differ in at least two
respects, namely, the torsion tensor (2.5) differs by a factor of two, and the index ordering placed on the
kernel symbol, R, of Riemann tensor (in (2.9)) ismodified, i.e., Schouten uses R, 10 denote (2.9).

f atechnical point: transvection is the operation of multiplying by a Kronecker delta, 57, and has the
operator form of an upper and lower index — in contradistincti@oniwaction - which involves the raising
or lowering of an index using a metrig,,, .
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on the spin connection and local automorphism invariance (see Crawford [88]) and the
“gauge gravity” theory that is considered in Chapter 3.

Probably the most obvious attempt to generalize Einstein’s theory based on a
modification of (2.2) is to allow the connection to have a non-symmetric or torsion
contribution. Although the theories stemming from this approach are not considered in
this thesis, it is still worthwhile to make a few comments on these cases given that
nonzero torsion will be utilized for calculational purposes in this Chapter and in Chapter
3. For example, torsion plays an essential role in Poincaré gravity which is the
generalization based on the Poincaré group suggested by Hehl, et. al (e.g., [49, 82, 89];

otherwise known as the Einstein-Cartap theory). The physical motivation is given by

noting that in general relativity the source of the gravitational field is mass, causing the
curvature of spacetime, but no obvious geometric role has been given to spin.
Furthermore, it has been demonstrated (see Heyl [82] and also Crawford [90]) that the
spin angular momentum of a system determines the torsion of the space when spinor
matter is present. Therefore, it is appealing to consider spaces with both curvature and
torsion as a framework for constructing gravitational theories at the microscopic level.
Macroscopically, these theories would presumably give back the usual version of general
relativity since mass (being of monopole character) “adds up,” while spin (being of
dipole character) averages out in the large. In essence, this picture forms the basis of the
view presented by Hehl et. al. [82].

Continuing with the variational calculation - the results may be summarized as
follows: variation with respect todg,, produces field equations that require the
symmetric contribution to the Ricci tensor to vanish. But no constraint is placed on the

antisymmetric part which may be expressed using Bianchi’'s second identity (Schouten
[83], p. 150; see also Crawford [90]):

RP +R° +R’ . =0 T2 +0, T2 +0, Tp

auv y7i%3 vy o ' uv py Kva L ) ) (210)
~ Tl = TToo ™ Tiol oy
Thus, the transvection af - p gives (letT, =T},):
-R,=0,T,-0,T,-0,T4, +T,T%,. (2.11)
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But the second set of field equations obtained from the variation, oI, , of the Einstein-
Hilbert action imposes a relationship between the metric and connection — namely, that
(2.1) is valid if and only if the connection is symmetric. The calculation is presented in
detail below.

First consider the variation of (2.7) with respecdyy),, :

9Sula Ml __pqay 09" o 4 vz 09%
—=— =0= ———09”R,, +[d R, - 2.12
o) |, A g N g e 1
Using the variational results (see also Crawford [90]):
39™(A) _ 1 sarq_ gy 997(0) Ay 2
————~—=-19,0'(q-(); ———<-=21(979) +o/o; )5 (q-d)/g"", (2.13
ngv(qr) 2gyv (q q) ngv(q,) 2( v v y) (q q) g ( )
(2.12) becomes:
JSEH[gir] _ 4 1/2 () () 4 ’ 1/2
—a | =[d'997" 3(0,07 +9797)0(q-d) /g R,
39" (d) |, I o] /) g (2.14)

~[d'939,,9"(a-d)9"R,.
Integrating (2.14) and then simplifying algebraically gives the field equations:

R —%9,R=0, (2.15)
noting that R, is not symmetric when torsion is present as noted above in (2.11).
Therefore, the field equations resulting by variation with respeotgtg require that the

symmetric part of the Ricci tensor vanish:

6Swla.r1 . _
o : R, =0, (2.16)

r

which is expected by variation with respect to a symmetric tedspt,. From (2.11) it
Is obvious that the free-field Einstein equations (2.6) are obtained as a special case of
(2.16) when the torsion vanishes.

The secondary field equations are obtained by variation with respé€t;to

0S[0.1]

OR
1 ' - O = d4q g1/2gp0 \oo (217)
or,(d) I

arg, ()’

g
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and then expanding the variation of R,, using the definition of the Ricci tensor from
(2.8) gives:

SO R
5 '
ore

- ri}/‘ r(;)a r/\ r(/.))g]./Zg

wo ' pA
uv

The variational termsin (2.18) may be expressed:

Oor? O Oor or’

é’ Za 1lzgpa - é’/‘ Za gllzg Z (5' (g1/2g )
Erw ? Erw ﬁ er (2.19)
Cor?, 0, ort,

‘? 5/1 gpa - (? Z/\ g1/2g Z (? g1/2g
(B B S g, 90 e (0707
noting that the first terms on the RHS in each case are boundary terms and will be

assumed to vanish. Substituting (2.19) into (2.18) and then expanding out the other
variations gives the result:

JR,ZO' 1/2 . po :_Jr%a é’/‘( 1/2 p0)+5r/1 é’ (g1/2g )
ory, . ory, ory,
2.20
Lor! ore, or:, (&2
+ Wl W +r PO __ l/2g
re, ° - “ore, ore N Jr” ?
Note that no symmetries have been assumed onthe I'%,, , therefore
or,,(a) , 0"
D 5;5550%. (2.21)
Substituting this result back into (2.20) then gives:
3R, (0) -
st Y 9 = (e -9 T 0" g T, 0" + g T 6"
124 t
: ' (2.22)

+ Jg[aa(gllzgya)+g1/2rzagpa]|]6 (q q)
t, g g

The structure of (2.22) is further clarified by rewriting t, and t, in terms of

covariant derivatives. Beginning with the first term of t,, note that
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O, (9"%0*) = 0, (") 9" +¢"* 0, g*, (2.23)

but to expand (2.23) further, an intermediate calculation of the covariant derivative of the

2

tensor density g"? is required (tensor densities are discussed in Schouten [83], p. 12).

To obtain these results, consider the covariant derivative of a tensor density, 1, defined
by (in 4 dimensions):

— [ Hvpo
MN=n""e, .

(2.24)

where £, is the totaly antisymmetric tensor density of weight +1 and M**’ is also

totally antisymmetric. The covariant derivative is thus calculated:

0, =0, + (TN + T, M%7 + 4,04 + T, M), . (2.25)
But notice from (2.24) that:
n#re = =L g, (2.26)
which gives
O, =0, M+3(T4,09+ T, 00+ 2,54+ 2,5%). (2.27)
Finally, (2.27) smplifiesto
O,n=9,N+r5Mm, (2.28)
or smilarly, for atensor density of weight —1.:
0,N=a,N-r%nmn. (2.29)

As an application of these results the covariant derivativgg“Gis thus obtained:
0,9"=0,9"" - gV, (2.:30)
Expanding the covariant derivatives on (2.23) and solving for the tégg">g"")
gives finally
0,(9"°9") =0, (99" ) + "I 5, 0" =" T}, 07 — g™ T, g (2.31)
As a result,t, may be expressed:
t, = -0,(9"g") 9", o +g"* T}, 9™ - g"* 0% (2.32)
—9 T 9" -9 T, 9 + g TG, g

The third and fifth terms cancel leaving two torsion terms and a covariant derivative:

t, = -g"?[0,(g"%g") - g"*T ", g + T, g"]. (2.33)
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Similarly, the t, term may be expressed:
t, = 0,(9"°9*) /9" +T, 9" (2.34)
Combining t, and t, with (2.22) and performing the integration, the final field equations

are obtained:

JSEH[gyr] : 0:5;7/ %]U(glmgya)/glm_l_-rp gypa

o (2.35)

g

~H.(0%g") g +TE, g +T, 9"
Considering various contractions of (2.35), in general it does not appear that that either t,
or t, will vanish independently of the other (unless the torsion is zero as discussed

below). Therefore, it is not sufficient to consider the vanishing of either term separately.
The field equations (2.35) determine the geometry of the Einstein-Hilbert

spacetime when the connection is neither metric or symmetric — in the same sense that

ro= sz(g) determines the geometry of the space whgrg,, =0 is satisfied. As a

result, (2.35) gives an implied relation between the metric and connection (or as
expressed in (2.35) — between the metric and the torsion tensor). As a consequence of
this relationship the following Lemma holds in a spacetime originating from the Einstein-
Hilbert action:

0,9"=0<T,=0. (2.36)
The Lemma is proven by first assuming that (2.1) holds. In this case (2.35) reduces to
0=(8/T,-T,) 0" -T, 0", (2.37)
and then solving for the torsion tensor gives the result:
TY, = 0'T, - J'T,. (2.38)
Transvecting (2.38) shows that the torsion trace vanishes:
T, =0, (2.39)
and therefore, in turn the torsion must vanish from (2.38). [Thease is proven by first

expanding the covariant derivatives in (2.35) using (2.30). The result simplifies to
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0=3; {,9" +(0,9"*/ 9" ~T 1) 9"
~H. 9" T 9 +(0,977 19" ~T0) g B,

But as noted earlier below (2.35), neither term of (2.40) can be assumed to vanish

(2.40)

independently of the other. However, if the torsion vanishes:
0=3; B1,9" +(0,9"*/g"* - ) 9"’
- .9 +(0,9"/9"-T ;)" H

then the first term is a contraction of the second and therefore it is sufficient to consider

(2.41)

only the second term:

0,9" +(0,9"%/9"*-T},)g" =0. (2.42)
By inspection of (2.42) it is obvious that 0, g* =0 implies that 0,g"*/g"* =T,
must be satisfied. But it is left to prove that d,g9Y*/g"*=r2, O 0,9* =0. If so,
this is equivalent to the statement that T, =00 0O, g” =0. First expand the covariant
derivative in (2.42) to obtain:

0,9 +T 5 9% +T 5, 9% +9"0,9"* 19" - g"T;, =0, (243)

and then multiplying both sidesby g, givesthe result:

9,0, 9" +40,9"?/1g¥?-2r4,,=0. (2.44)

Next expand the partial derivative, , g*'%, using the identity

0,9"°=39""9""0,0,, =~39"79,,0,9” (2.45)
which is obtained by differentiating the identity:
detM =exp[tr(InM)], (2.46)
which is true for an arbitrary (non-singular) matrix M. Substituting (2.45) into (2.44)
then gives
Ma==%$0,00,9%, (2.47)
and therefore (2.42) simplifiesto
0.g* =0, (2.48)

and completes the proof of the Lemma (2.36).
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It is important to emphasize that neither side of (2.36) is obtained independently
of the other. But if the 0 case is assumed then as a consequence (albeit trivial) the
antisymmetric contribution to the Ricci tensor must vanish as seen from the second
contracted Bianchi identity (2.11).

Derivation of the Schwar zschild Solution

The unique static spherically symmetric solution to Einstein’s field equations
describing the exterior gravitational field of a spherically symmetric distribution of
matter was found by Schwarzschild [91]. The term static implies that the metric is both
explicitly time independent (stationary) and invariant under —t. The relativistic
effects associated with a spinning distribution of matter (Kerr solution) are entirely
negligible insofar as the classic solar system experimental tests are cofcamad.
result, the Schwarzschild solution has been the most important for testing the predictions
of general relativity. The stability properties of the associated orbital dynamics are
considered in detail in Chapter 5.

A derivation of the solution is obtained by assuming a spherically symmetric
metric of the form:

ds® = g, do“dq" = c®A(r) dt® = B(r) dr* - r*dQ? (2.49)

dQ*=d&*+sn*6dg¢°.
As discussed by many authors (e.g., Weinberg [92], pp. 176-179; Ohanian and Ruffini
[78], pp. 391-396) the metric (2.49) is the most general starting form since cross terms
involving dt [@r and scale factors preceding the dQ? term may be eliminated by suitable
transformations of the time and radial coordinates. For the analysis considered here the
“standard” form (see Weinberg, p. 177) shall be adopted but it is worth noting that the
metric may also be expressed in isotropic form:
ds® = c®A(r)dt> — H(r)(dr? +r?dQ?), (2.50)

by a suitable re-definition aof The Christoffel symbols are thus calculated from (2.49)
using the Christoffel formula (equation (2.2)):

f however, there are proposed experiments to measure the frame dragging effects of a spinning digtribution

of matter (gravity probe B).
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ro=ro=A/2A
Fe=A/2B;r;=B/2B;r,=-r/2B;,=rsn’6/B (2.51)
r2=r2=r=r3=1r;ri=-cosfsing; ri=coté,
and the free-field equations (2.6) become (Appendix A):
R, =-[(2A'A- A*)B- AB A]/4AB? + A/rB=0
R, =+[(2A'A-A*)B-AB A/4A°B+ B'/rB=0

) (2.52)
R, =(AB'-BA)r/2AB*+(B-1)/B=0
Ry, =sin6 R, .
For later reference, the Ricci scalar, R=g” R, , isalso calculated:
R=[(ABA' - AAB' - BA?) +[2(AB-B'A)/ AB*]/r
I )+ 12 )/ ABY] (253)

—-2(1-B™)r?/2(AB)?,
which must vanish by contraction of (2.6).
The derivation of the Schwarzschild solution to equations (2.52) has been widely
discussed in the literature (e.g., Ref's [93]) using a variety of methods. But probably the

simplest procedure is to note the algebraic similarityRpf and R,,. Dividing these

respective components of (2.52) AyandB and then adding together gives the following

result

R R 'B+B'
w, Do _DAB+BAD (2.54)
0

A B [ rAB?

and therefore the following relationship must hold betweandB:

const.
B

The constant is determined from the Minkowski limit as- o« in which case,

AB+BA=00 " =g J A= (2.55)

A=B=1, giving
A=B™. (2.56)
As a consequence of (2.56) the volume element of 4-space is well defined regardless of
what coordinate singularities might exist for eitheor B.
Using (2.56) the field equations (2.52) simplify to (primes denote derivatives with

respect ta):
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Ad
=- 2% 1-A-rA)=0
"=y dr( )
1 d .
Ri=oag t™ATTA)I=0 (2.57)
R, =1-A-TA =0
R, =sin6 R, .

Therefore, the field equations (2.57) imply that the following differential equation must
be satisfied:

rA+A-1=0, (2.58)
which has the solution:

Alr)=1-c,/r, (2.59)
where c, isan integration constant. Note also that the Ricci scalar simplifies in this case
to

CrPAT+ArA+2A-2  d¥(r’A)/dr?-2

r? r? ’

R

(2.60)

and therefore the vanishing of the Ricci scalar leads to a more general solution which

gives (2.59) as a special casewhen ¢, =0:

R=00 d(r*A)/dr =2r -
(FAdr=2r-¢ (2.61)
O A=1-c/r+c,/r?

Asillustrated in the next section the constant c, is due to a nonzero stress energy tensor

and therefore (2.61) does not correspond to a vacuum solution of the field equations.
Furthermore, it is worth noting that the differential equation resulting from the vanishing
of the Ricci scalar is more general than simply (2.60). As a result there are other
spherically symmetric solutions to R=0 besides (2.61). In fact, Littlewood [94] has
proposed atheory based on this condition which was later shown by Pirani [95] to have a
nonphysical solution. These details are considered further in Chapter 3.
The Schwarzschild solution is thus given by:
ds® = c®Adt® - A~ldr? - r?dQ’
_ (2.62)
A=1-r/r;dQ*=d6*+sn’0d¢?,

and the integration constant is determined from Newtonian correspondence which is
discussed below and in Chapter 5:
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r,=2MG/c?, (2.63)
where r, defines the Schwarzschild radius. The Newtonian limit for a general spherically
symmetric metric may be obtained in two ways — in the first by considering the geodesic
motion of point massm,. The second method considers the correspondence with
Poisson’s equation for the gravitational field. In summary, the former limit gives the
value of the Schwarzschild radius as well as the interpretation of the total energy for the
system (discussed in Chapter 5). In addition, the limiting forrg,pfis obtained from
this method which is discussed below. The second limit provides the coefficient of
1611Gc™ preceding the Einstein-Hilbert action (presented earlier in the previous section),

but this derivation is not considered here (see for instance, Anderson [96]).

To consider the first limit note that the Euler-Lagrange equations of motion may
be expressed in either of two forms - in the standard Lagrangian form (dots denote
differentiation with respect to the proper timég:

d d. JL
— 7= =0, 2.64
dr " " ( )
or in “geodesic” form
g'+r;, g“q" = 0. (2.65)

Equation (2.64) is an alternative expression of (2.65) since the relativistic Lagrangian

consists only of a “kinetic” term (i.e.l.=3g,4“q"). As a result, the connection

coefficients, " ;,, are defined in terms of the gravitational field (the “metric”) according

to the Christoffel form,FZVE%g‘”(é'ng +J,0,,-J,9,,). Expanding the summation
on the second term in (2.65) gives (the Latin indicgsjenote spatial coordinates):
Mo 070" = T (a°)+2r5a°q" + g (q'), (2.66)
but in the Newtonian limit it is assumed thglt<< ¢, and therefore,
M 070" = Too(q°)" =c Ty (). (2.67)
The ', coefficient is calculated using the Christoffel formula:

rc;‘o =3 Ap(zao 90 _ap goo) = _% g/‘p ap Goo s (2-68)
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where the first term is zero since the metric is assumed static. Separating the spatial and
time components gives

Foo = =390, =39 0, 95 ==39" 0, Go, (2.69)
and then assuming the metric is diagonal - from (2.69) a further result is that
My 0g” =0, (2.70)
and therefore

d?q°/dr?=c*(d*/dr?)=00 dt/dr =const.=1.

(2.71)
The constant is obtained from the Minkowski line element when v<<c. Asaresult the

I, a“q" termis expressed finally:

M 676" - Ty(G°)° =cTy = —4¢°g" 9, gy, (272)
and then combining with (2.65) gives the equation of motion for the point mass, m,:

MG =3m,c’g"” 9, goo. (273
In the Newtonian limit it is reasonable to assume that the metric differs by some small
deviation, h,, , fromthe Minkowski line element:

gyv :’7;“/ +hyv1

(2.74)
and therefore to first order in h,, (noting that " =-9"):

moqi :—%moczd”ajhoo, (2.75)
or in coordinate free notation:

m,§=-imc?0h,,.

(2.76)
The corresponding Newtonian equation of motion for a particle in a gravitational field is
given by

. _ . OGMm, C
m,g=-0¢=-05—r,

(2.77)
o r C
and therefore the following correspondence is made:
20
hy = : 2.78
o= (2.78)

As a result, the “00” component of the metric is expressed
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20
m,c®

Op =1+ (2.79)

Comparing (2.79) with the Schwarzschild line element (2.62) shows that for proper

Newtonian correspondence:

re 20 2MG
goo:]-__ =1+ u rs= 2

_ (2.80)
r m, C c

(note: r, =1 cmfor the Earth; r, =3 km for the Sun; r, = 3 meters for Jupiter).

Derivation of the Reissner-Nordstrom Solution

The static spherically symmetric solution to Einstein’s field equations describing
the exterior gravitational field of a spherically symmetric charged distribution of matter
was found in 1916 by Reissner [97] and independently in 1918 by Nordstrom [98]. The
Schwarzschild solution is a vacuum solution of Einstein’s field equations, but in the
Reissner-Nordstrom case the event geometry is coupled to the stress energy tensor of the
electromagnetic field. The total action is thus defined EHEinstein-Hilbert; EM=
electromagnetic):

Sl 9] = Sen + Sau iaa - (2.81)

and therefore the most general form of the Einstein field equations couple matter fields to
the event geometry through the stress energy tensor of the source. The stress energy

tensor is defined as the symmetric tensor:
0Sy[9]/09" =-10,,, (2.82)
and as result, the Einstein field equations including sources are given by (on tf@ RHS
iIs Newton’s gravitational constant):
G, =R, -%9,R = 87Gc"0,,, (2.83)
where G, is the Einstein tensor and the proportionality constant on the RHS of (2.83)
gives the proper Newtonian limit with Poisson’s equation. But since an electromagnetic

field is present Maxwell's equations must also be satisfied, and therefore, the field

equations are given by the coupled Einstein-Maxwell system:
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G, =8nGc™0,
(2.84)
0=0,F".

First consider the G, =8n1G c* ©,, equations. The stress-energy tensor for the
electromagnetic field is derived from the S, action using (2.82) and the variational
results, (2.13), presented earlier in the first section of this Chapter. The result of this
calculation is given by (k is determined by the system of units - see equation (2.95)):

——(F F,

HV 4 4 gyv po

F*), (2.85)
where
- _ 1 4 1/2 po
Sen[0] = Tk J’d qg °F,, F”. (2.86)

The electromagnetic field is assumed to be static and spherically symmetric. As aresult,
the only nonzero components of the field strength tensor are in the radial direction:
oo E(r) 0 OC

0 0
~E(r) 0 0 0

F =0 O 2.87

oo 0O 0 oO (2:87)
0

Ho o o of
where E(r) isthe electric field. Raising and lowering indices on the field strength tensor

using the metric — the stress energy tensor (2.85) has the components:

EEZ/B 0 0 0 E
_ 2
Oyv: 190 E2/A 2 2o 0 0 (2.88)
kO 0 0 r’E?/ AB 0 |
E 0 0 0 r2E23in20/ABE

which is traceless. As a result, from (2.83) the solution will have a vanishing Ricci scalar
and therefore (2.84) is replaced by the simpler system of equations:
R, =81Gc™0O,
(2.89)
0=0,F".

The first set of equations in (2.84) are obtained by combining (2.52) and (2.88):
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—(2A'A- A*)B- AB'A]/4AB” + A/rB = GE*/kc'B
00

+H(2A'A- A*)B- AB'A]/4A’B + B'/rB=-GE?*/kc'A (2.90)
11

(AB' - BA)r/2AB*+(B-1)/B=GE??/kc'AB ,

22

and only the first three components are independent since the “33” component is “22”
xsin®@. From (2.90) add and subtract the following linear combination to obtain:

("00"/ A(r) + "11"/B(r)) 0 AB+BA=0, (2.91)
and thereforeA=B™ as in the Schwarzschild case. Now consider the second field

equation of (2.84):

Um_pgA B 40 _, 4

E +—+—E(AB
AR HATE T E( )
O (2.92)
O
[l

| o

and after substituting the resuB,= A™, the equation simplifies to
E'+2E/r =0. (2.93)

The solution forE(r) is thus given by
c
E(r) :r_j, (2.94)

where ¢, is an integration constant corresponding to the charge of the system. In

arbitrary units the electric field is given by

E(r) _ kY%
T

(2.95)
where the constarit is determined by the system of units (in Gaussian and electrostatic
units k = 1; in MKS units k = (47&,)™"; see Jackson [99] or Wangsness [100] for

additional discussion on unit conventions). Using this result in combinationBapitiA™*,

the field equations (2.90) simplify to



29

r—'i‘(rA'+ A+Gke*/c'r?-1)=0; %(rA# A+Gke*/cr?-1)=0

% i1 (2.96)
Li(rA' + A+Gke*/c*r*-1)=0 .
2dr

2
By inspection the differential equation that must be satisfied is given by an
inhomogeneous version of (2.58):
rA+A-1=Gke’/cr?. (2.97)
The solution to (2.97) is thus given by
A(r) =1-c,/r +Gke*/cr?, (2.98)
where c, is an integration constant which must reduce to (2.63) in the limit as e - 0.

For later reference it will be useful to express the Reissner-Nordstrém solution in the
form (let A - A):
ds® = Adt®> —-A7dr? - r’dQ?
AN=1-x+x*/2A (2.99)
dQ? =d@* +sn*gd¢?,
by defining the dimensionless variable=r,/r, and the dimensionless parameter:

2

¢ o.d_26omd

A:ZGKBEE:Tagﬁ. (2.100)

The most obvious difference between the Reissner-Nordstrom and Schwarzschild

solutions is that the Reissner-Nordstrom spacetime now has two horizons located at

X, = Az JAA-2) =r/r_, (2.101)
wherer, is the exterior horizon and is the interior horizon as illustrated in the phase
diagrams of Chapter 6.

At the beginning of this chapter it was noted that the Reissner-Nordstrom solution
corresponds physically to the exterior gravitational field of a charged spherically
symmetric black hole. This case is given by the parameter valu2. But there are
other interpretations that may be given to (2.99) based on the rat®o aofd M.

Specifically, the interpretation given to the cake 2 (i.e., r, =r_) is to the spacetime

exterior of a charged dust cloud in equilibrium between electrostatic repulsion and
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gravitational attraction. Finally when A<2, the singularity is exposed a r =0.
Although (2.99) was discovered in 1916 shortly after the Schwarzschild solution, the
physical interpretation for the case, A =2, was not given until 1965 by Bonnor [101] (see
Carter [102)).

The parameter value A <2 is widely considered to be nonphysical based on the
cosmic censorship conjecture (Penrose [103]) which states essentially that naked
singularities cannot exist in nature. Therefore, assuming that the cosmic censorship
conjecture is valid, the maximum charge contribution to the total mass of the black hole

IS given by the parameter value A =2. This case gives the “extremal” Reissner-
Nordstrom black hole for which, =r_ and corresponds to the maximum attainable

charge that can accumulate based on the mechanism discussed by Eddington [77] and
Harrison [79] (see the Introduction for a further discussion). Thus, the Reissner-

Nordstrom line element (2.98) (letting\(r) — A(r)) is expressed in terms of two

fundamental length scales associated with the mass and chaagel () respectively:

MG Ol [Gke? 01
A(r)=1- + , 2.102
O EE e o
I's

ré

which according to the cosmic censorship conjecture must satisfy the relation:

r 1 r. 1
=0 -2, 2.103
LV 2 (2.103)
From the definition ofd the ratio ofe/ M is thus calculated for the extremal cagex(
Coulombs):
% = \/% =~ 8.61x10™ C/kg. (2.104)

Using dimensionless units (whekéG/k =1) the charge to mass ratio of the electron is

given by

€ - 2x107%, (2.105)
m,
and therefore
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€ n e L
—2 =10 C- (2.106)
M .t

For an additional order of magnitude comparison the value of A given by (2.100) is thus
calculated for both an electron and proton:

A, =48x107°; A =15x107>, (2.107)
and therefore A <<2 in these cases. For a star like the Sun the order of magnitude

estimate given by Eddington [77] (see also Harrison [79]) gives approximately 100 C of
charge per solar mass and therefore

G~ 19 280 12174107 (2.108)
M g 7

But the cosmic censorship conjecture has not been proven, and recently a detailed
examination of several gravitational collapse scenarios [104] has shown that naked
singularities may develop in a variety of circumstances such as the collapse of radiation
shells;, spherically symmetric collapse of perfect fluid; collapse of a spherical
inhomogeneous dust cloud [105], and the spherical collapse of a massless scalar field
[106]. Additional numerical studies have shown that under special circumstances, e.g.,
highly elongated “cigar” shaped mass distributions, that the formation of naked
singularities does occur. But the conclusions that may be drawn from these numerical
studies are questionable given that the numerical solutions are not always well defined
over all spacetime domains of interest (e.g., the Riemann curvature tensor may become
singular; see also [78]).

Additional evidence that questions the plausibility of naked singularity solutions,
specifically in the Reissner-Nordstrom case, was given some time ago by Boulware
[107]. Boulware shows that a thin charged spherical shell will collapse to form a naked
singularity if and only if the matter energy density of the shell is negative. But as Morris
and Thorne [108] have emphasized in their investigation of wormhole solutions to the
Einstein field equations, this does not necessarily prove Akak is nonphysical. In
fact, they give physical examples where negative energy densities can be physically
reasonable and are actually required in special circumstances. Therefore, it is not

inconceivable that a Reissner-Nordstrom object w2 could exist, at least insofar as
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a negative energy density is concerned, although such objects must certainly be exotic as
noted by Morris and Thorne. The viewpoint adopted here is non-committal on the
physical existence of such solutions - these parameter values are simply explored as
dynamical possibilities in Chapter 5 - not necessarily physical ones.
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Chapter 3 Gauge Gravity

As discussed in the Introduction several alternative quadratic curvature
Lagrangians have been considered as possible generalizations of Einstein’s theory. The
motivation for considering such work has been to setup a framework for gravitation that
closely resembles a Yang-Mills type gauge theory in the hopes of unifying gravitation
with the other fundamental interactions. As a consequence the action must be quadratic
in the Riemann curvature tensor - in contrast to the linear Einstein-Hilbert action
discussed in Chapter 2 (for a similar approach based on the local gauge invariance of the
Clifford algebra basis elements see Ref. [88]). Therefore, to trace this development, a
brief review of the variational formulation of Yang-Mills gauge theory is discussed in the
first section of this Chapter. Gauge Kinematics are then discussed in the following sub-
section followed by Gauge Dynamics which includes an analysis of the spherically
symmetric solutions. In the final section of this Chapter an algebraic constraint is derived
by imposing equivalence between the standard and “gauge gravity” Palatini variational

procedures.

Yang-Mills For malism

In 1954, Yang and Mills [109] introduced the idea of gauge fields through local
Isotopic spin transformations. If dynamical equations are to be defined over the internal
iIsovectors on a background Riemannian manifold, then a gauge covariant derivative must
be constructedyf are assumed to be Lorentz scalars):

O,p*=0,p* +T5,¢°
(a,b = isospace; u,v = event),

(3.1)

to insure invariance under the local isospin transformations:
Yo~ T =Sy, (3.2)
(or what is the same, to define equivalence of isovectors at neighboring events of the

spacetime manifold (the kernel index method [83] is adopted here to denote the gauge

transformation,a - a')). In (3.1), the connection (or “gauge potential”) is expressed as

a linear combination of the algebra basrg,
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ratlw =[ry0k]ab =T yaabk

(i, j,k = isovector), (33
generating the su(2) Lie algebra
0,1 = €% (3.4
with
S2=[e"*]2 0SU(2), (3.5)

an element of the Lie group, SU (2) f (see dso Appendix D). Applying (3.1) to (3.2), and
then requiring that

O,¢° - 0,¢% =S30,¢4°, (3.6)
gives the required inhomogeneous transformation law of the gauge potentials:
re, = Sire,s’ - (4,S%)Sy, (3.7)
or using matrix notation
r,=sr,s*-@,9s™. (3.8)

Explicitly, we may consider (3.3) in the adjoint representation (i.e. the dimension
of the carrier space = the dimension of the algebra):
0o -rL
i — 3 1
M=ol 0 Tup (3.9)
2 1
E Fe T 0 E
since in this case
[o.] = €\, (3.10)
are the structure constants of su(2) . In the spinor representation (3.3) becomes

o rs r, —irz2C
re, = g H =l (3.11)
S PR -
since now the generators are the Pauli matrices, 7%, :
[0]5 = 37 %, (3.12)

with k = isovector index; A, B = isospinor index.
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The field equations for '}, are derived from a variational principle. The free-
field Lagrangian (see Uzes[110]) istaken in quadratic form:
Lo = =% 990 10 P epo» (3.13)
but for calculations let us use the first order form (for instance, Crawford [90]):
Lw =29 Y PP dcpa

_%g/‘pglm¢cd/1x(apr?:0_‘?thtj:p-l-rdfprfca_rl rf )1

fo cp

(3.14)

given that this choice yields the defining relation of the gauge fields (or isospin

curvature) in terms of the gauge potentials with respect to ¢ %4 :

5¢t;;élvj: ¢Eyv:0‘)yratlw_o‘)vraby-l-racyriw_racvrc

by 1

(3.15)
and in addition satisfies the Bianchi identity:
Dp¢iyv + Dy¢ivp + Dv¢%py = O (316)
From the non-abelian structure in (3.15), the gauge field transforms as a rank 2 isotensor
under the local gauge transformation, ¢ %, - ¢i;,w:
¢ ag’yv = Szr Sn’d ¢ cdyv ’ (317)
insuring that the action constructed from (3.13) is both a scalar and isoscalar. In the
interest of generality, let us consider the field equations resulting from variation with

respect to ", on a curved background spacetime. The action in this case must be

au?

Sm = Id4q 9Ly - (3.18)
Performing the variation we get (note: this calculation is identical in structure to the
calculation worked out in detail beginning at (3.53); see also Treat [19] - equation (59)):

2,(9" 950 + 9" (Mo, @ - T4 ¢°70) =0, (3.19)

since ', issymmetric. We may express this result in terms of the covariant derivative

noting from (2.30) that 0, "> =00 4, g"* = g"T;,, and calculating:
0,020 =0,(95%0) + T, R+ T, 000t T RV - Ty R (320)
(S —

zero

f let us note, however, that this construction may be generalized to other Lie groups.
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Solving for d, ¢ %, divesthe final result:

ore,.  gr0,¢%% = 0. (3.21)

Gauge Kinematics

Continuing with this pattern, the Y ang-Mills formalism may be carried over to the
general relativistic case beginning from the (global) invariance of special relativity, i.e.

the Lorentz group, SO(1,3) (see also Appendix D). But there is another viewpoint that
can be taken in this respect (Fairchild [26]); that local invariance under general
coordinate transformations may be accounted for by introducing I 7, , i.e. the “gauge

potential” of Gl(4,R) (the linear group of general coordinate transformations in 4

dimensions). However, there are important differences to be noted in this approach
compared to the former case that make it awkward to keep close analogy with the gauge

theory formalism outlined in the previous section. Briefly, the idea is to note that if
dx* = A* dx", (3.22)
denotes a general coordinate transformation on the spacetime manifoldAthés a
non-singular4 x 4 matrix and thereforeA” 0GI(4,R). Following the gauge theory
pattern, next construct a covariant derivative with respedsl{@, R) by introducing
7, as a‘“gauge potential” to insure thag b* (for an arbitrary vectob”) transforms

as a tensor. The gauge field in this case is just the Riemann curvature tensor given by
(2.9):
RY, =0,TL -0,Tt +T0T, —ThT,,, (3.23)

but here is where the analogy ends; the gauge potelﬁi;;a,l,of VU (2) (for instance) has
indices in both coordinate and internal spaces - so there can be no symmetries with
respect tg and x. However, as noted earlier in Chapter™Z, is generally expressed

as a sum of both symmetric and antisymmetric contributions which suggests that index
symmetry on the lower indices should be considered fundamental in this case - in contrast

to the gauge connectioﬁij .- Therefore, we will not proceed with the method based on



37

Gl (4,R), but instead carry through with calculations in a local Lorentz frame to follow

closely (in formalism) the traditional Yang-Mills type gauge theory pattern with
kinematics based on SO(1,3). It is this observation which motivates the introduction of

the tetrad basis as discussed below.

To begin, a brief review of local Lorentz invariance is given to set the notation
(see also Appendix D on group theory). The discussion presented here is based on the
earlier presentation by Crawford [90]. The Lorentz group is defined as the orthogonal
group of transformations that leave invariant the Minkowski  metric,

0y =1y =(+L,-1,-1,-1) ,T where a, b denote Lorentz indices. The transformations are
defined such that

O =ANSNL Oy, (3.24)
with g,, = 0., =(+1L-1,-1,-1) and A denotes the Lorentz transformation. A

special transformation may be introduced that shifts the coordinate dependence of g,, to

an auxiliary set of quantities labeled as tetrads, e, (note: additional discussion of the

tetrad basis is given in the following section; these are equivalently referred to as
vierbeins (or vierbein basis) by several authors, see e.g., Crawford [90]):

9,(@) = e7(a)e,() 9u, (3.25)
where u,v denote the coordinate space indices. Note however that local Lorentz

invariance may be considered in (3.24):
9ar =N (A) A7(Q) G, (3.26)
gtill recovering the defining group relation, but e, in (3.25) is not a Lorentz

transformation.
The covariant derivative in this case is defined by

OV =9,V +Tp VP, (3.27)

f note: in the literature it is more common to denote the Minkowski metric using the kernd symbol 77

rather than g. However, this notation is redundant when using the kernel index method since g, is
aready 17, .
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which insures local Lorentz invariance of the derivative. Here '}, is the (spin)

connection and V # denotes an arbitrary Lorentz vector. The connection is expressed as a

linear combination of the algebrabasis, o ;:
e, =M% 0% =% 045, (3.29)
generating the so(1,3) Lie algebra:
[Ow: O] = 9acOni = a1 Ot = Fbc T + Joa O (3.29)
where
A% =[et" =12 0S0(1,3). (3.30)
Again, by requiring that
OV~ 0,V =A0,V®, (3.31)
the transformation of I %, is determined by

M, = NS AT — (G, NNS. (3.32

Tetrad Basis

A basic assumption of the gauge gravity theory is that the connection is in
Christoffel form after the Palatini variation. As a result, the variational calculations are
simplified considerably in this approach by calculating in the tetrad basis. In this section
areview of several mathematical details of the tetrad basis are given and then adopted for
calculations in the following section. To begin, consider the condition that the
connection is metric as discussed in Chapter 2:

U, 9,0 =0. (2.1)
Assuming that (2.1) is valid, it follows from the definition of the covariant derivative that
0,e3 =00 Iy, =e’rg el + (d,e)e, (3.33)

or conversely
re =ejr, el —(9,¢e)el. (3.34)

However, it should be noted that (b — L) is not a coordinate transformation despite the

formal similarity taken by (3.33) (or (3.34)) to the inhomogeneous transformations laws
(3.7) (or (3.32)). The relations given in (3.33) and (3.34) will be considered basic for
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calculations in the tetrad basis; therefore, we will assume that the metric condition is
valid throughout. 1n addition, we note that the index antisymmetry of the Riemann tensor
(first index pair only):

R =-R (3.35)

POHV apuv !

isaconsequence of "7, being metric. To prove this consider
(0,0,-0,0,)9,,. (3.36)
and then assuming that U, g,, =0, we get (3.35) (see Misner, et. d. [66], p. 326 (and

comment at bottom of p. 324). See aso Schouten [83], p. 145. From (3.33), the torsion
tensor (2.5) is expressed
T, =-e’(9,€ -d,€,+T, €, -} e), (3.37)

bu ~v 1%

and for the case that T, = O, the spin connection and tetrads are no longer independent
since I 5, may be expressed in terms of the tetrads:
r aby = %ecy (QL+Q,—QJ%), (3.38)

where Q% =¢gfe’(d,€, — J,€,), is the object of anholonomity (Schouten [83], p.

100, equation (9.2) and p. 170, equation (9.9)).
In the tetrad basis the Einstein-Hilbert action is expressed (e = dete;):

Sei[ef] = Id“qeef;eb" R . (3.39)

bpo

However, if we follow closely the gauge theory pattern, one would expect the correct
Lagrangian to be given in quadratic form:
L = =% 9”9 RU1R" (3.40)

cpo

by analogy with (3.13); i.e. R}, plays the role of a field strength tensor for the

a

gravitational field and %,

IS the gauge potential. However, an important difference

a
bpo

between the gravitational and Yang-Mills version should be noted: R and %, are

related to the event geometry, but this is not necessarily true for the corresponding Y ang-
Mills quantities. The relationship between the Yang-Mills field and the event geometry

Is discussed in detail in Ref. [111]. In the following section we give a discussion of the



40

field equations resulting from (3.40) which provides the starting point for gauge gravity
and a brief review of the other forms that have been considered.

Gauge Dynamics

Field Equations
In previous sections an outline has been given of the gauge theory formalism. A
basic result is that if ones considers general relativity as a gauge kinematic theory based

on SO(1,3), then the action must be quadratic in the Riemann curvature. However, there

are several quadratic invariants that can be formed using the Riemann tensor and
calculations for these cases have already been examined in an early paper by Stephenson
[10] " discussing:
S = I d‘q g2 R?
s, = [d'g 9:R,, R” (3.41)
S, :Id“q g° R? ., RO

The field equations resulting from (3.41) with respect to the Palatini variation (i.e. dg,,

and dI 7, are assumed independent) are derived in [10] and are given by

%59*’”: 2R(R,, - 9,,R) =0

0S,[g,l]: U L
Bl 0,(g°9"R) =0
g“: R'R,+R'R,, - $9,,R, R =0
ssfory: o0, Tt e TR @42
Pro,: 0,(0°RY) =0
JS [g r] . %yg H LT RprUD/D]RVpUA + RpﬂUD/]DREVU/\ + dey/l Rgpv/lﬂ_%gvapEb/]E’I(]RUp/\K = O
3LY: :

gyrzv : Dp(g% Rﬂalév =0,
where Stephenson has assumed that T 7, is symmetricin v, but no a-priori relationship

Is assumed to exist between the metric and connection (i.e., [ #0). However,

o gyv

Stephenson and others have viewed (3.42) with little consequence and impose the

f Note: Stephenson did not have any intent along the lines of gauge theory. At the time of his paper, these

formulations were of interest mainly for unifying the eectromagnetic and gravitationa fields and were also
previously considered by Weyl, Pauli, Eddington, and Lanczos as discussed in the Introduction.
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Christoffel form onto I'j, after the variation to obtain the following set of field

equations:
@gv R RV - %g VR = O
ssfo.r] .o o (V” wF) (3.43)
/Pre,: g 0,R=0,
o R'R,, -—3g, R _R” =0
sslar Do e T @
/ore,: O,RY =0,
gV: Rp RJV/‘ _l VRPO'AKRJK :O
3Sg.r| .- 29w R oo = 20 RomR' (3.45)

|:| g . -
/®re,: 0,R,, =0.

As discussed in Chapter 2, the Palatini variation of the Einstein-Hilbert action

givestwo field equations (for simplicity consider the free-field case): dg,, gives R, =0

while dT" ;, leadsto the Christoffel form:
r Zv = % 7 (‘?/,1 g)lv + o‘,v g)l,u - a}l g,uv) ' (346)

However, is not clear that imposing I'J, = FZV onto (3.42) should give anything useful

uv

since this relation originates from 0O =0 (and the Einstein-Hilbert action) while

P gyv
(3.42) is derived from (3.41). Furthermore, imposing this condition seems inconsistent

with the Palatini approach - the consequences of each field equation for JI" 7, in (3.42)
should be worked out independently of (3.46) and therefore independently of the

Einstein-Hilbert action. If this analysis leads to ', =T 7, then fine. If not, then the

secondary field equations of (3.42) should be considered over (3.45) as the starting point
for a gauge theory of gravitation. In summary, the assumption of (3.46) after a Palatini

style variation of 0S; with respect to the connection constitutes the “gauge gravity”

theory as discussed in the literature. At first glance this analysis would appear flawed
and at least inconsistent with the Palatini variational procedure, but in the final section of
this Chapter a constraint is obtained from this approach that places a restriction on the
solutions satisfying (3.45). The condition is obtained by requiring equivalence between
the field equations obtained from the standard variational procedure (Christoffel form is
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assumed at the outset) and the gauge gravity field equations that are derived by imposing
the Christoffel form after the fact.

An important relation that will be used later in the analysis is discussed by
Lanczos [6] who has shown that the field equations resulting from the variation of (3.41)
arenot al linearly independent since

0ldg,,(S, -4S,+5S;) =0, (3.47)

Is an identity in a 4-dimensional spacetime when using the “standard” variational
procedure. However, (3.47) is not an identity for the Palatini field equations obtained by
imposing the Christoffel form of the connection after the variation. Therefore, (3.47) will
have important consequences for the subsequent analysis. Furthermore, (3.47) may be

expressed as the Euler topological invariant:
S:[0] = [d'0 9 &6 R, R, (3.48)
To see this, expand the product:

o, 9, 9, O
£ M = — % % % 9 , (3.49)
Py o, o, 9o o
o) 9] o) o

and then (3.48) reduces to t&auss-Bonnet form (for instance [112]; compare with
(3.47) and (3.41)):

Seel0] = ~4S:lg] = [d*q g"* (R* - 4R, R” + R, RE).  (3.50)
But since (3.48) is a topological invariant, inspection of (3.50) shows that (3.47) is true
by identity.

The first set of equations (3.43) have been proposed by Littlewood [94] and then
later considered by Pirani [95]. Pirani has shown that these equations have a solution
leading to} of the perihelion precession predicted by the Schwarzschild case, and in the
opposite direction. The second set have been discussed by Misner and Wheeler [113] in
their study of electromagnetism and gravitation as pure geometry. In their paper, the
general relativistic field equations are coupled with electromagnetic sources (i.e. (2.85))

and then solved for the Maxwell field strength tendgy,, in terms of the Ricci tensor.

Substituting this result into Maxwell’'s equations they obtain the coupled Einstein-
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Maxwell equations in purely geometric form (i.e. using only R, ). For the relevance of
their work to 9S, in (3.44), the algebraic condition that F,, be expressed in terms of
R,, isequivalentto R=0, and in additionthat R'R,, =% 9,,R,, R =0, issatisfied.

Returning to (3.41), the remaining discussion will focus on S; since this is the
starting point for gauge gravity. This case has also been considered by Fairchild [33]
given the minimal assumptions considered earlier in Chapter 2 that the connection is not
assumed metric or symmetric. In the remaining part of this section the second JS; field
equation in (3.45) will be derived by working in the tetrad basis. Therefore, the starting
assumption is that the torsion is nonzero since e/ and F;’y are no longer dependent
variables as may be seen from (3.37) and (3.38). Note however that the event connection
Is assumed to be metric to obtain (3.33)).

Since the “gauge gravity” theory consists of the field equations obtained with
respect to the connection, we will consider in some detail a calculation of the secondary
field equations fordS; in (3.45). To begin, the Lagrangian is taken in the first order
form:

Lfg.r] = % 9”9 R

d
dpo R cAw

1 ~NPA oW C c c c f c f (351)
-20790 deo(aprda_dardp+rfprda_rfardp)1
and the first set of field equations are expressed in the coordinate basis:
Jg w : Hyv = Rpay/l Rapv/‘D - %gvapaAElK]RUp/lK = 0 ' (352)

For simplicity we assume that no sources are present (Fairchild has considered the
possibility for nonzero sources [26]). The field equations are thus calculated by variation
with respect to the connection:

0S,[erl]
ore

au g

= 0= [d'g g? oL,/or" (3.53)

au

to obtain:



oL [erl] . . .
53rb e=-3 R [, (o7, /0r",)-a,(or%,/0r",)
a g
+ (T, 10T ) gy + T, (T 'y, /0T",)
— (5,105 ), = T%,(07 ¢, /3T, Ee.

Noting that
R0, (374, 167", )e = 8, R (T, /107", ) e

- (o7, 13T",,) @,R)e = (875,131, )RS, (3,0,

equation (3.54) becomes
0= —%{ap R (35, 10T8,) e (T, 10T 5, ) @0, R e
— (31, 10T, )R%,(3,8) - 3, RY(3r 5, /0T5,) e
+(are,10r8,) @R e+ (ars, 108, R (D,0)
+ RO S, 10T 2 )T e+ RIS (O 4, 13T")e

au 3,
-R 5r°w/5rt;y)r;p - RIS (or ;pldrt;w)ge,

and then setting the boundary terms:
2,R (o, 1075, ) eHand 9, FR%2(aT 5, /3T", )ef,
to zero this equation simplifiesto
0= -3{-(are, /0r",) @R Z)e (35, /1T, )RE%(4,9)
+(are,/10r8,)(0,R e -(are,10T", )RS, (3,6)
+ RYX(ATS 10T )T e+ RIS (T L, 107", )e

au
— R(OT S, 10T, )Tl e = REZTS, (3T |, 10T 5, ) ef}

By using the identity
OT ‘io(a) = [d'df e(d) 3(0505 ~ ™) T, 3'(q — ) /e,

(3.58) expands to

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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0 = - 3${-4(0:07 - 9024 (9,R)e
- (9508 — 9798 )0 RYT(0,€) + 3(87 - 9%0w) 9 (9,RYD)e
- 30503 - 970w 34 REES (0,8 + Ry 30507 - 970,,) 34 T e (3.60)
+ R, 3(0, 07 - 9"0w) 3 e RYZH(8507 - 979,) 04 T 4,
- RYET5,3(8)05 - 9"9s) 04} x &'(d - a)/e.
Simplifying algebraically and then integrating this result, the following field equation is
obtained (compareto (3.19)):
2,(eRY%) + e(ra, R - T,R%%) = 0. (3.61)
Equation (3.61) may be expressed in the alternative form
J,(RYf) + T, RYG + T, R + Mo, R - TR, =0, (3.62)
after substituting (this equation may be derived from (2.30)):
d,e=e(l, +T7)=e(l), +T,), (3.63)
into (3.61) and then switching dummy indices on the first term. Next use the definition
of the covariant derivative:
DR = R + T LR — 4TA R, + T R — TR,
and solve for d, R, to obtain the generally covariant result:
O, R +T, RS +4T4 RS = 0. (3.64)
The corresponding coordinate basis result is therefore:
O, R+ T, R+ 5T RE = 0. (3.65)
If the torsion vanishes the gauge gravity field equations are thus obtained (lowering the
Aand p indices, changing k — v, and noting symmetry on the first and last index pair):
Y,,=0,R%, =0. (3.66)
The field equations (3.66) may be expressed in an equivalent form using the torsion-free
Bianchi identity:
U, R"UW +0, R” , +0, Rpmy =0. (3.67)

Transvectingon A and p (3.67) becomes
o,RrR%, -0,R,, +0,R, =0, (3.68)

auv
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and therefore (3.66) is equivalent to
Y, =0, R, =0. (3.69)
Contracting once again on (3.68) gives
0,R” =10,R, (3.70)
but then contracting (3.69) and combining with (3.70) shows that:
0,R=0 O R=congt.. (3.71)

Spherically Symmetric SolutionsPart I: (+)(+)

As a result of (3.71) solutions to (3.66) will be spaces of constant curvature
although spaces of constant curvature need not be Einstein spaces (as noted by Schouten
[83], p. 148; note: by definition - an Einstein space is one in which the Ricci tensor is a
scalar multiple of the metric — see Petrov [114]). This statement is easily proven by
counter-example which is provided by (3.73) and (3.74) discussed below. In addition,
the fact thatR is constant does not necessarily imply that the metric satisfies (3.66)
(although the reverse is certainly true as pointed out above). An example is given by
(3.103) as discussed below.

An immediate result is that solutions to the Einstein field equations

R, =0, (3.72)

satisfy (3.69). However, there have been objections to (3.69) on the grounds that in
addition to (3.72), several other nonphysical solutions satisfy these equations. For
example, Pavelle [31] and Thompson [32] have shown that

ds® = (L+c,/r)?dt? = (L +c,/r)2dr? - r?dQ? (3.73)

dQ?=d@* +sin*6dg?,
IS a solution to (3.69). But this is the solution already shown by Pirani [95] to give an
erroneous value for the perihelion precession (see comment below (3.50)). Furthermore,
the metric discussed by Thompson [32]:
ds® = dt> - (1-c,/r)dr? - r?dQ?, (3.74)

satisfies (3.69) but gives an incorrect Newtonian limit. Another class of solutions found
by Ni [25]:



a7

ds® = dt> — (@ +c,/r +c,r?)'dr? - r’dQ?, (3.75)
satisfies (3.69) with ¢, and c, = constant, but gives an incorrect value for the redshift as
noted by Ni.

The origin of these solutions may be clarified by summarizing the differential

equations that follow from (3.52) and (3.70). To begin, assume a spherically symmetric
solution in exponential form:

ds® = e dt? - e”®) dr? - r2dQ?, (3.76)
which greatly simplifies the structure of the differential equations that are considered in
this Chapter compared to those obtained from the “standard” form, (2.49).

Christoffel symbols and Ricci tensor for this metric are thus given by (Appendix B):

rr'['[ = r'[tr = A'
M, =1 =B ;ry,,=e*,;r;, =-e*rsn’g (3.77)
0 6 ¢ —_¢ — .re _ _ -9 —
rr9_r9r_rr¢_r¢r_1/r,r¢¢— COS@S”'\@,F¢9—COI'9,
and
Rtt = eZ(A—B)[(An + A12 _ ArBr) + 2Ar/r] — O
C=(A"+A?-AB)-2B'/r
Rr ( -2B ) 2B (378)
Ry =—re[(A-B)-(e™ -1)]
R¢¢ :sin29 Ree :
respectively. The Ricci scalar simplifies to
R=2e?°[(A"+ A - AB)+2(A-B)/r—-(e®*-1)/r?], (3.79)

The

and for later reference the Riemann and Weyl tensors are also calculated in Appendix B.

Beginning first with theH , =0 field equations (3.52) the nonzero components

are given by:
H, =" ?P[(A"+ A? - AB')? + 2(A% = B?) /1% = (e®® = 1) /"]
H, =-e?®[(A"+A%- AB)* -2(A?-B?)/r* - (e® -1)%/r"]
H,, =r’e“®[(A"+ A* - AB')? - (”® -1)?/r*]
H,, =Hgsin’g,

(3.80)

and the “gauge gravity” equations (3.70) simplify to
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Y, = ez(A'B’[%(A" + A% - AB)-2(B'-1)(A"+ A? - AB') - 2A'/1?]
Yy, = —Te°[(A'+ A> - AB)-(A'-B")+2B'(A-B)-(e® -1 /r*] (3.81)
Yo =Yoo s Yora = Yoor 5 Yoo = Yprp = Yoo, SIN?E.

ttr trt ?

Considering the first set of equations (3.80), by inspection there are four obvious solution

possibilities:
A+ AZ - A'i: z J;r E(fB ~)/r? (3.82)
Considering (3.81) separately leads to the system:
SL(A"+ AZ - AB) -2(B - 4)(A"+ AZ - AB) - 2A/r* =0 (3.83)

(A"+ A - AB)-(A'-B")+2B'(A-B)-(e®-1)%/r* =0,
and then by substituting the various possibilities from (3.82) into (3.83) (i.e, (+)(+),
H)), ()H), (5)()) it is apparent that only two cases will give a simultaneous
solution of both H , =0 and Y,, =0. These correspond to the (+)(+) and (-)(-)
equations (see Appendix B).
To begin, the (+)(+) differential equations of (3.82), are given by

AH+A!2 _ArBr =+ (eZB _1)/r2

3.84
O (3:84)

and as noted above satisfy Y,,, =0 identically. Combining the two equations in (3.84)

gives a second order, nonlinear, inhomogeneous differential equation:

B'=(e®-1)/r>. (3.85)
Equation (3.85) is expressed in an alternative form using the variable substitution:
=1In/A(r), (3.86)
to give
A" 12N\ —/\'2/2/\2 +1/r*A=1/r?
3.87
dr Bz_ 1% 1, (3.87)

A solution to this differential equation is given by the Pavelle-Thompson solution,

A =(@1+c,/r)*, where c, is an integration constant. It is worthwhile to pause for a
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moment to summarize the forms of the metric that result from the second + equation of
(3.82) using the variable substitution in (3.86):
(H)(+) 0 ds? =Adt?> - A dr? - r?dQ?
—
A=+B
(H)(-) O ds? =Adt*> -A™dr? - r?dQ?
—

A=-B

3.88
(-)(+) O d&* = Atdt2 - ALdr? - r?dQ? (3.59
—

A=+B
(-)(-) O ds? = Adt® - Atdr2 - r2dQ?,
A=-B

noting that only two of these forms are distinct. The Pavelle-Thompson solution has the
form of the first equation in (3.88) with A given above.

Note on The Vanishing Ricci Scalar and Weyl Tensor Solutions

The Pavelle-Thompson metric (3.73) aso has a vanishing Ricci scalar and Weyl
tensor which has consequences for the theory of conformal gravity discussed in Chapter 5
as well as for the gauge gravity field equations. To see this note that the Weyl tensor
calculated from (3.76) has 24 nonzero components, but interestingly every component
contains the following differential equation as a common factor:

Cl ~[(A"+ A* = AB) - (A-B)/r=(e®® -1 /r?]. (3.89)

Comparing (3.89) with the Ricci scalar of (3.79), the following result is obtained:

An_I_AIZ_ArBr:_I_(eZB _l)/rZD QQ:O
A=+B o =0,

ouv

(3.90)

which isjust the (+)(+) case discussed above. Therefore, we make the observation that a
vanishing Ricci scalar and Weyl tensor gives a class of simultaneous solutions to the
gauge gravity field equations, i.e., both H , =0 and Y, ,, =0 are satisfied. The Pavelle-
Thompson solution is just one example.

The theory originating from the field equations (3.90) is Nordstrom’s theory [34]
and was noted previously by Ni [25] and later by Baekler and Yasskin [37] as a

simultaneous solution to the gauge gravity field equations. But also note that other
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differential equations may be satisfied that give sufficient conditions for a vanishing
Ricci scalar:

A,A; ;iz(;zf'_gl):/gr 0{ rR=0, (3.92)
A=const. O (B'=—(¢*®-1)/2rg0 { R=0, (3.92)
A=-BO H*(B'-2B%)+4rB =(¢* -0 { R=0, (3.93)
and the Wey| tensor is considered separately:
:\":B,?\'i (—efB' l?';or {c, =0, (3.94)
A=const. 0 BB'=(e®-1)/r =050 { ¢4, =0, (3.95)
A=-BO F*(B"'-2B%)-2rB'=-(¢®-1)H0 { C%,, =0, (3.96)

which are not equivalent to the simultaneous condition of (3.90), i.e., there could be cases
where the Ricci scalar vanishes (recall that this case is Littlewood's theory [94]), but the
Weyl tensor does not and vice-versa.
Considering first the Ricci scalar equations (3.91), elimindteising the second
equation and then the first equation simplifies to:
r’B" +(3e’® -NrB'/2+(e® -1)(e*®* -3)/4=0, (3.97)
which may be expressed in the alternative form uslrg—1In/A(r):
205(N2 = AN")+1(A=3N +(BA-1)(A-1) =0. (3.98)
Although solutions of (3.98) imply that the Ricci scalar vanishes, the converse is not

necessarily true sincé\ =(1+c /r?)* (of the Pavelle-Thompson solution) does not
satisfy (3.98), but\ = (1+c,/r)™" of the Thompson solution (3.74) does. The difference

Is given by the assumed relation betwe®rand B: the Pavelle-Thompson solution
corresponds tAA' = B’ from (3.90), while A" and B' of the Thompson solution satisfies
(3.97) with A'=const.. However, (3.97) could have more general solutions other than
the Thompson solution. The cas#,=congt., is just one special form and is discussed
next.

The second differential equation resulting from (3.9%)= const., is given by
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B'=—(e®-1)/2r, (3.99)
which may be expressed using the change of variable B =—-3InA(r):
rA"+A-1=0. (3.100)
The differential equation (3.100) is identical to the differential equation discussed earlier
for the Schwarzschild case and therefore, A =1+c,/r, is the solution. As aresult, this
metric gives a (trivially) more general form of Thompson’s solution (3.74) (since the
term precedingdt®> may be an arbitrary constant). The last casR of0 is obtained by
substituting A= —-B into (3.79) and is given by (3.93). The differential equation is thus:
r’(B"-2B")+4rB =(e’®* -1, (3.101)
which may be expressed using the change of variable (3.86):
PPA"+4r N'+2(A-1) =0. (3.102)
This case is satisfied by the Schwarzschild functfys1+c,/r, as may be verified by
direct substitution, but is not satisfied by either the Pavelle-Thompson or Thompson
solutions. In addition\ =1+c,/r?, also satisfies (3.102) and therefore an additional
vanishing Ricci scalar solution is given by
ds® = (1+c,/r?) dt®> — (1+c,/r?)*dr? — r?dQ>. (3.103)
However, one may check by direct substitution that (3.103) does not satidfy, jhe0
orY,, =0 field equations, nor does it have a vanishing Weyl tensor (Appendix B).
Interestingly, note also that (3.103) corresponds to the Reissner-Nordstrom solution of
the Einstein field equations with zero mdss.

Next consider the vanishing Weyl tensor equations (3.94). The second equation is
now used to eliminate A’ so the first equation simplifiesto

r’B" - (3¢*®* -1)rB' +e®(e® -1 =0, (3.104)
which may be expressed in the alternative form using (3.86):
FP(AN" = A2 +r(A-3N +2(A-1)=0. (3.105)
Equation (3.105) is satisfied by

f | thank Jim Crawford for pointing out this detail.
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A=(1+c,r)™, (3.106)
and also

A=(1+c,r2)™. (3.107)
However, in either case, we would till have to solve for A from the differential
equation: A'=B'—-(e’®-1)/r, to obtain the full solution. Next consider the case when

A isconstant giving

B'=(e®*-1)/r=0. (3.108)
Using (3.86) results in the following differential equationin A :
rA'=2A+2=0, (3.109)
which has the solution:
A=1+c,r>. (3.110)

Equation (3.110) has a vanishing Weyl tensor, but does not satisfy (3.90). However, this
equation also originates from the (-)(-) equations of (3.82) as a special case of (3.119)

(which is discussed at greater length below), and therefore satisfies boththe H,, =0 and

Y, =0 equations. The A=-B case is given by (3.96) and results in the differential

equation:
r2(B"-2B2)-2r B' = —(®® -1), (3.111)
which is expressed using (3.86):
FPA"=2rN'=2A-2=0. (3.112)
A solutionto (3.112) is given by
A=1+cr+c,r?, (3.113)
and therefore
ds® = (1+c,r+c,r) dt®> - (1+c,r+c,r?)'dr? - r?dQ?, (3.114)

givesasolutionto the C? =0 field equations as well as the special cases: ¢, or ¢, =0.

auv
However, (3.114) does not satisfy either gauge gravity field equation since the Ricci
scalar is nonzero in this case, but the solution does have consequences for the
conformally invariant theory of gravitation discussed in Chapter 5 (as does as the special

case, c, =0).
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Spherically Symmetric Solutions Part 11: (+)(-), (-)(+), (-)(-)

Continuing with the other solution possibilities of (3.82), it is important to note
that the first two ((+)(-) and (-)(+)) are not necessarily solutions of both gauge gravity
field equations but rather only for (3.82). Beginning with the (+)(-) equations, these
simplify to the following differential equation:

rPA"+2A -2=0, (3.115)

which may be integrated to give
/\:1+r1’2B:lcos(lnrﬁ’z)—czsin(lnrﬁ’z)H, (3.116)
with ¢, and c, integration constants. Equation (3.116) gives an unreported exact
solution to the H,, =0 equaions but does not satisfy Y,, =0. Nevertheless, the

solution has some interest given that all other previously reported exact solutions of the

gauge gravity equations, besides the Pavelle Thompson solution, satisfy only Y, =0
andnot H,, =0.

The structure of the (—=)(+) equations of (3.82) is similar in form to the (+)(+)
equation (3.87):
N"[2N=N? 12N> =1/ PN = -1/ r?
SdonN 1g1 o (3.117)
dr A T A
However, the Pavelle-Thompson solution does not work in this case. Furthermore, there
are no other nontrivial solutions known to satisfy (3.117). Finaly, the (-)(-) equations
give the second set of equations that satisfy Y,, =0 identicaly. In this case, (3.82)
simplifiesto:
A" =2\ +2=0, (3.118)
which may be integrated to give the solution:
ds® = Adt> - Adr? - r?dQ?

X (3.119)
N=@Q+c,/r+c,ro).
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Equation (3.119) is the solution first obtained by Kottler [115] as a solution to Einstein’s
field equations with cosmological constaai,:

R, =3¢, 0,,- (3.120)

v

The solution was later noted as a solutionYjg, =0 by Pavelle [23ﬁ and also by

Fairchild [33]. Asaresult, this metric has the important property that its Ricci tensor is a
scalar multiple of the metric and is therefore an Einstein space.

There are other solutions to the gauge gravity equations that do not necessarily
satisfy the H , =0 equations. One case to consider is by setting A" to zero in (3.76)
which resultsin (3.118) and therefore (3.119). But thereis an important difference in this
case since the coefficient of dt® is constant. This particular form was noted by Ni and
was listed earlier in (3.75):

ds® = dt®> — (@ +c,/r +c,r*)'dr? - r’dQ>. (3.121)
The extraneous solution (3.74) noted by Pavelle [31] and Fairchild [26] is simply a

special case of Ni's solution withc, =0:
ds® = dt®> - (1 +c,/r)dr? — r’dQ>. (3.122)
Another special case is obtained wieerr= 0 which gives the Einstein universe solution:
ds® = dt> - (1+c,r?)dr® - r’dQ?, (3.123)

which was originally pointed out as a gauge gravity solution by Thompson [32]. The
Einstein universe solution also has a vanishing Weyl tensor but the Ricci scalar is non

vanishing R=6c,) and is discussed in more detail below.
As a check one might wonder if settir to zero in theY,, =0 equations

would lead to any other solutions. But the only solution in this case is given by
A=const. since every component of the resulting equations contains a fackor oAs
a result, this case is trivial. Another possibility to consider is setNhg A* - AB' =0

in (3.81). In this case the equations simplify to

f note, however, that Pavelle's listing of Kottler’s solution is incorrectA = (—c,/r +¢,r?), which does
not satisfy the gauge gravity field equations.
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2RI =0 (3.124)
(A'-B")-2B'(A-B)=—-(e®-1/r?,
which are only consistent if A=const.. Therefore the second equation reduces to the
differential equation:
B'-2B'%=(e?®-1)/r?, (3.125)
orintermsof A:
rPA"=2A+2=0, (3.126)
which again results in the Ni solution but in a trivially more general form since then A is
an arbitrary constant.

Auxiliary Algebraic Constraints
Given these extraneous solutions to the gauge gravity field equations, Pavelle [31]
and Thompson [32] have suggested that there should be an additional constraint placed
on the solution set of (3.69) to eliminate the nonphysical solutions. Following this
suggestion, Fairchild [33] has proposed that the constraint be given by the “second set” of

field equations obtained from the first equation &b, in (3.45) - by variation with
respect todg,,. However, this approach turned out to be incorrect as later noted by

Fairchild [116, 45]. The purpose of this section is to discuss a condition that eliminates

several (but not all) of the extraneous solutions to the gauge gravity equations. The
condition is derived by first noting that the Einstein-Hilbert action is special in that its
variation gives identical results using either the standard or Palatini variational
procedures. Specifically, the field equations that are derived from the Einstein-Hilbert

action by assuming the connection is in Christoffel form from the outset are equivalent to

those obtained when the connection is taken as an independent variational parameter.
However, this “symmetry” no longer applies when the action is taken in quadratic form
and the gauge gravity “Palatini” procedure is applied — which should be distinguished
from the true Palatini procedure where the connection and metric are completely
independent (as considered in Chapter 2). As a result, imposing this condition onto the

f see footnote 27 of Fairchild's paper.
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resulting field equations originating from the quadratic curvature Lagrangians leads to an
auxiliary algebraic constraint that restricts the class of spacetime solutions satisfying the
gauge gravity field equations. These constraints may be equivalently derived as a
contraction of the integrability conditions for the Ricci tensor as discussed below.

First calculate the metric variation of the Gauss-Bonnet action (3.50) using the
“standard” variational procedure. The result of this calculation is given by (Appendix B -

see also Parker; Christensen [117]):

0=- R(Rﬂ‘/ B %g#V R) - (R Déﬁég _%gyVRpO'/\K RPUAK)

uApo

+ Z(Ra va - %gvapa RPJ) + 2RS¢ R%wv '

(3.127)

noting especially that (3.127) is an identity. It is worthwhile to pause for a moment and
consider another useful identity that may be derived from (3.127) using the

decomposition (see for example Carmeli [93], p. 72; or Weinberg [92], p. 145):
Rpayv = Cpayv + %(gpyRUv - gpvRUy - gaprv + govay)
(3.128)
+ %(gpv goy - gpy gov) R 1
where C ,,, is the Weyl tensor defined in (3.128) (this quantity is discussed in more
detail in Chapter 4). Eliminating the Riemann tensor from (3.127) using (3.129) gives
the result (the algebra is listed in Appendix B):

Copo Cotft = %9 Coonc C* = 0, (3.129)

LApo
which is Pirani’'s conformal identity (Ref. [118], p. 3f7and may be summarized by the

relation:

Js?gﬁonnet =0 0 C;Mpo Cvmégg - %g#VCPJAK CpUM = 0. (3'130)

Therefore, Pirani’s identity is the “field equation” originating from the Euler-Gauss-
Bonnet action using the standard variational procedure.

Continuing with (3.127), add and subtrégag,,R,, R* to obtain the result:

uv' Npo

f note: this identity was only suggested by Pirani as an exercise and is not necessarily referred to as

“Pirani’s” identity in the literature (the derivation above gives a solution to it; an alternative solution is
derived by Parker and Christensen [117]). But since Pirani has suggested the proof of this equation as an
exercise we will refer to it as Pirani’'s conformal identify for lack of a better label.
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=" R(R“V B %g#" R) + (R;Mpo Dé%(]; _%gvapaM RPUM)

+2(RPR -9 R . R)+2(R°R* -1g R _R*” (313
( tu " Spv 4g#v po ) tp * “Lhov 4guv po !

recalling that this field equation is an identity obtained from the Lanczos linear

combination:

014g,,(S, -4S,+S;) =0, (3.132
using a standard variational procedure. However, by substituting the field equations that
are obtained with respect to dg** from (3.43), (3.44), and (3.45), (i.e., by assuming the
connection is in Christoffel form after the variation) then (3.132) (or equivalently (3.131)
) isno longer an identity. A basic result is that (3.131) is satisfied (with the connection in
Christoffel form after variation) only if the following condition is met:

R”p R"WV = pr R, (3.133)
which is not an identity as may by checked by substituting several of the nonphysical
solutions discussed in the preceding section. It is emphasized that (3.43), (3.44), and
(3.45) were derived using the Palatini style variation of the quadratic curvature
Lagrangians, and then by imposing the Christoffel form afterward. As a result, (3.133)
gives a necessary condition that the standard and “gauge gravity Palatini” procedures
give identical results.

The condition is also obtained by requiring the field equations resulting &om

of (3.41) to satisfy the same requirement, but in a weaker form. To derive this result
consider the field equations resulting from the gauge gravity Palatini procedure applied to

S, of (3.41) which are re-listed below:

. 0 g A _ 1 P AKDO —
@gyv' RJyAvaD ZgvaJEDR oAk T 0

oS;: [ (3.134)
' ®re: 0o,R,, =0.
The corresponding standard variational results are given by (Appendix B):
ngv : (R;Mpa Déﬁég _%gyv RpaAK RWAK) + ZDJDp pr%/D = 01 (3135)

which is the field equation considered by Eddington (this was noted in Ref. [37]). By
inspection it is clear that a sufficient condition for (3.135) to be satisfied is given by both
field equations of (3.134). In fact, since the Pavelle-Thompson solution (3.73) satisfies
both field equations of (3.134), the field equations resulting from the “standard”
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variational procedure also admit a nonphysical solution. In fact, there could be even
more solutions to (3.135) than merely those of (3.134) aone. For example, there might

be cases where 0, R%,% # 0, but 0,0, R,%’ = 0, is satisfied. However, if (3.135) is
required to vanish using only the og* field equation of (3.134), then it is

straightforward to show that the vanishing of the second term implies that the auxiliary
condition (3.133) is satisfied for a redtricted class of spacetimes. To see this first note
that the second term of (3.135) may be written as (using the Bianchi identity (3.67)):

0,(0,R,,)=0,(0,R, -0O,R,). (3.136)
Raising the k - o index gives
0,(0,RrR%%) = 0,0°R,, -0,0,R%, (3.137)

and note also for later reference that (this is equation (3.70)):

9*0,R,,(=0,R,)=0,R-0,R, 0 O,R, =10,R. (3.138)
But since
0,0, -00)R% =R,R,, - ROR,,
( IR p“ 8 Upp g (3.139)
= R,R, - R,R,,,,
the 0,0, R, termon the RHS of (3.137) is expressed using (3.139):
0,0,R%, =R, R, -R%,R",, +0,0,R%, (3.140)
and after using (3.138) this term becomes
0,0,R, =R, R, -R%, R, ++0,0,R. (3.141)
Finally, substituting (3.141) into (3.137), the final result is obtained:
0,0,rR, % =0°R, - (R, R, - R%R",,) - +0,0,R. (3.142)

Therefore, the field equation originating from the standard variational procedure may be
expressed in the equivalent form:
(R Déﬁég - %g/,lVRpU/\K RPU/‘K) - Z(Rp,u va - Rap prav)

wpe (3.143)
+ 20°R,, -0,0,R=0.

It is worthwhile to pause for a moment to summarize the field equations obtained using
the standard and “gauge gravity” Palatini variational methods. The quotation marks on
“Palatini” in the following listing emphasizes that these field equations are not “true”
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Palatini results, but follow by imposing the Christoffel form of the connection as
discussed earlier (the standard variational results listed below are derived in Appendix
B):

O : R(R, -1g,, R)=0
D"Palatini":épgw (Rw %9, R)
5s,: [ r,: g 0,R=0 (3.144)

@tandard:{dgw : R(R, -9, R)-(0,0,R-g,, [’R) =0,

v

. A g _

B" Palatini": éﬁgw + RaRy _%g#VRpa R* =0

0 ?FZV:DJRW:O

0

. A g
55, [ DO 2ARGR 5 9uR, R Z200RG ) e
2 % dard . * DZRW * 9w DpDaRm =0
andarda:

[l aj Z(RpaR/\v _%gvapa RPU) - DyDv R+ DZRyV

d = +4g,, [°R=0,

5" Palatini®: épg”” L R R 59 R TR, =0

0 P DR, =0

O (59, : (R R -%0,,R 0 R7
583 : |:| |:| g#V ( AP 0m 4 gy ‘oo ) (3146)

rO_
+20,0,R02%7=0
R;Mpa Dé;ég - %gyv RpaAK RPUAK)

U @ 2p —
H 0-2(R%, R, -R, R - 0,0,R+20°R,, =0.

%tandard: é] (

By inspection of the “standard” variation results for each case above, we see that the

Lanczos linear combination (3.47), eliminates terms like:
. 2 . 2
0,0,R;9,0R; OR,. (3.147)
Returning to the discussion of the auxiliary condition, the point is that by

requiring only thedg”” field equation of (3.134) to vanish implies that (3.133) is
satisfied for a restricted class of spacetimes. |.e., substitutinggHte field equation of

(3.134) into (3.143) gives the result that
0°R, -(R%,R, - R%R5,) -410,0,R=0, (3.148)
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but this condition admits additional solutions since it is just the condition that

0,0, R%,%, vanish (from (3.142)). However, a subset of (3.148) may be picked out from

the result obtained earlier using the Gauss-Bonnet variation that only the middle term of
the above eguation vanish (i.e., (3.133)), which does not by itself imply that (3.148) is
satisfied (an example is given by the Pavelle-Thompson solution, (3.73), for which

0,0,R%,%, =0 issatisfied but R, R,, = R% R”,,, =0 isnot).
It is of interest to substitute the non-physical solutions discussed in the previous

section into the auxiliary condition. The results are summarized below by letting

X, =R, R, ~R“R,,, . (3.149)

u v

The nonzero components in each case are thus given by

O, 4ci(c,+3r) " = 4¢cZ(3c, +5r)
W T e Ty o AT T e
ré(c +r ré(c +r
Pavelle-Thompson: ] €+ €+ (3.150)
0 4¢c?(c, +T) _
0 X, :% ; Xy =X, SN0
DX =0; X, = 3C12
0T T orS(c, +r)
Thompson: [ (3.151)
Sy iy an
Exzz _P ' X33 - Xzzsm 0

_ 3c,(c,—2¢,r%)
2r°(c,+r+c,rd)

3k, (¢, —2¢c,r® _
yy == 1( 14r4 2 ), X33:X223|n29

Xo=0; X, =

Ni: (3.152)

DI%(I:II:II:II:II:I

By inspection of these equations it is apparent that the Pavelle-Thompson and Thompson
solutions satisfy the X, =0 equations only if ¢, =0, which results in the Minkowski

line element. However, requiring the Ni solution to satisfy X, =0 implies that ¢, =0
which is the Einstein universe solution (3.123) - and is not an Einstein space since the

Ricci tensor for the Einstein universe metric (3.123) is given by

R.=0

. 3.153
Rijzzczgij;(hjzlze’)! ( )
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and the Ricci scalar is 6¢,. Therefore, the Einstein universe solution is not eliminated as
a nonphysical solution to the gauge gravity field equations by the auxiliary condition
(3.149) (i.e., solutions that are not Einstein spaces). In addition, the Weyl tensor for the
Einstein universe solution vanishes and therefore the space is conformally flat which is
discussed further in Chapter 5 for more general cases. The origin of the Einstein universe
solution is clarified by noting that it provides one of three static cosmological models (the
de Sitter and Minkowski line elements give the other two; see e.g., Tolman [119]) and is
therefore a solution of the Einstein field equations with a nonzero cosmological constant,

A, inauniverse filled with matter and radiation (i.e., the stress energy tensor is nonzero):

R, -%9,R+Ag, =87Gc™0,,. (3.154)
The point is that it is not a solution to the Einstein free-field equations. Some additional
insight on why this metric is not eliminated by (3.149) is obtained by expressing (3.149)
in terms of the Weyl tensor and the trace-free Ricci tensor, P, , which is defined by
R, =49, R+P,. (3.155)
Eliminating the Ricci tensor using (3.155) and the Riemann tensor using the
decomposition given in (3.128), (3.149) may be expressed (Appendix B):

X,, =iRP, +2(P/P, -1P,P?”)-P?C,,,

) A (3.156)

_%PA (Pyv +%gva) +%RC pAv 1

but the last two terms vanish since P,, and C*,,, aretraceless giving:
X,, =iRP, +2(P/P, -1P,,P*)-P?C,,,. (3.157)

As a result, X, =0 does not imply that P, =0, i.e, there are other solutions to
X ,, =0 besides Einstein spaces. The example is given by the Einstein universe solution

where
I:)oo = _%Cz , P11 :%Cz On (3 158)
Py =23C,0x%; Ps=%C,05

For this solution the P”C,,, term is zero as a result of the vanishing Weyl tensor.
Neither of the remaining two terms in (3.157) is zero, but their linear combination results

in X, =0.
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Theterm
P?C 0 (3.159)
Is closely related to an identity discussed by Thompson
RowRy=0, (3.160)

which has recently been discussed by Guilfoyle and Nolan [35]. Their analysis considers

the various Petrov types of spacetimes alowed by (3.160) according to a Segré
classification of the Ricci tensor (this classification was previously discussed by Petrov
[114] and also by Debney, Fairchild, and Siklos [44]). But in fact, the condition (3.160)
says nothing more tha®,= 0, since the equation is an identity. The similarity to (3.159)

is obtained by expressing (3.160) in termsRyf using (3.155) and then eliminating the

Riemann tensor using the Weyl tensor using (3.128). The result is given by (Appendix
B):

C o wP? =0, (3.161)

poluv
and not surprisingly, all of the solutions discussed above satisfy (3.161) since this

expression is an identity, but not every solution satisRéSC,,, =0. It is of further

UOV
interest to note that the theory proposed by Fairchild [42] — which is given by the
simultaneous solution of( is a constant):

{R,+R”C,,, =0

B g (3.162)
Y, =0,R,, =0,

may be expressed using a term like (3.159). Additional analysis on the equivalence
between solutions of this theory and Einstein’s theory were given by Debney, Fairchild,
and Siklos [44] showing that the only vacuum solutions of the theory are also those of
Einstein’s.

Finally, it is of interest to investigate other solution possibilities Xg =0 by

substituting the arbitrary spherically symmetric metric into the auxiliary condition. The

differential equations that result in this case are given by (see Appendix B):
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X,: TrPQA+B)(A'+A*-AB) +rA(A+B)+A€*-1)=0
X,: Tr*(A+2B)(A"+A?-AB) -rB' (A+B)+B'(e* -1) =0 (3.169
Xp: TH(A-B)A'+A*-AB) +r(A+B)’+(A-B)e*-1)=0
Xy Xgsin?6=0.
Considering the linear combination X,/ A'+ X, /B’ gives the condition that
X Xo _oo HATB)I(A-BYA+A®-AB)-2AB] 3¢,
A B AB
and therefore either
A+B =0, (3.165)
or
r(A-B)(A"+A2-AB)-2AB =0. (3.166)

Considering first the A=-B case and substituting into (3.163) shows that the following
differential equation must be satisfied for each component of the X
B"-2B*-(e*-1)/r*=0. (3.167)
The differential equation (3.167) was discussed earlier in the analysis asthe (-)(-) case
(see (3.125)) and results in the solution given by Kottler (3.119):
ds® = (1+c,/r+c,r?)dt® — (L+c,/r+c,r?)*dr® - r?dQ?, (3.168)
which is an Einstein space. Another obvious solution to (3.166) is given by A= const..
Inthiscase, X, =0 andthe X, and X,, both give the following differential equation:
X, and X, =0: B'-(e®-1)/r=0. (3.169)
The differential equation is simplified using the substitution, B=-3InA, to give
A'=2A+2=0, (3.170)
which results in the Einstein universe solution:
ds® = dt> - (1+c,r?)dr® - r’dQ?, (3.171)
as discussed earlier. Finaly, setting A= B satisfies (3.163) but only when A and B are
both constant.



Chapter 4 Conformal Gravity

As discussed earlier the quadratic curvature Lagrangians:
S, = I dq g% R?
s, =[d 9:R,, R” (4.1)
S, =[d‘q g’ R%,,R7H,
and various linear combinations of them have been considered as possible generalizations
of Einstein’s theory based on local Lorentz invariance. But other investigations based on
local scale invariance have been considered, i.e., by postulating invariance under the
conformal transformation:
‘9 = A(0)7 9 (4.2)
where A is a locally varying scale factor, amddenotes general coordinates. From a
more physical viewpoint, the motivation for considering a conformally invariant theory is
postulated from the transformation law of a length element:
ds - ‘ds = Ads. (4.3)
The idea is that physical phenomena should be independent of locally chosen units for
mass, length, time, etc.; i.e. the group of conformal transformations should be a
symmetry group of nature. In fact, Maxwell's theory of electromagnetism is conformally
invariant - as demonstrated by Cunningham and Batemann [120] (see also Fulton, et. al.
[121] and Wald [122], p. 448); although it should be obvious that every conformally
invariant theory would not necessarily be physical.
In the recent literature there have appeared several papers describing a theory of

gravitation based upon an action quadratic in the Weyl conformal te@$gy,, which is

defined as the totally traceless contribution to the Riemann curvature tensor according to
the decomposition listed earlier in Chapter 3:
Rpayv = Cpayv + %(gpyRov - gpvRUy - gaprv + govay)
+ %(gpv gap - gpy gav) R "

Therefore, to base a theory on conformal invariance the following conformally invariant

(4.4)

combination has been considered for the action:
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S= _[ d*qgicCe,, Co. (4.5)

The field equations originating from (4.5) by using a standard variational procedure have
recently been discussed by Mannheim and Kazanas (MK) [56, 57] from a strictly
classical viewpoint. A spherically symmetric solution to these field equations that was
originally discussed by Riegert [123] has been reconsidered by MK who have suggested
that an apparent observational inconsistency with galactic rotation curves could be
accounted for by atheory originating from (4.5).

It is apparent from (4.5) (and (4.4)) that a consequence of basing a theory on
conformal invariance is that the action considered for the theory must be quadratic in the
curvature tensors. Therefore, several features of the conformal analysis are shared by the
quadratic curvature Lagrangians discussed in the previous Chapter. The purpose of this
Chapter is to emphasize this similarity and to show that a class of conformally flat
solutions to the gauge gravity field equations, namely those also satisfying Nordstrom’s
theory [34] are also shared by conformal gravity. In addition, an investigation of a
spherically symmetric solution structure to the theory is presented — which is the solution
that has been recently advocated by Mannheim and Kazanas.

Conformal Transfor mations of the Curvature Tensors

To help motivate the proposed conformally invariant generalization of Einstein’s
theory we illustrate in this Section that none of (4.1) are invariant under (4.2). But there

does exist a linear combination &, S,, and S, that is invariant. To begin, consider

the transformation of the connection under (4.2) (see also Eddington [5] - pp. 200-222;
Schouten [83] - pp. 133, 304):

T =%970,'9, *+3,9, — 9,'9,)

o -1/ 50 T oK (46)
=r, +A°(59A+ 93,9 -9%g,04).
Using the definition of the Riemann tensor:
Rpayv = o‘)yrgv - o‘)vrgy + r/l\)yrc/";v - rfljvrc/'};ﬂ (47)

and then (4.6), the transformation rule Bf,,, is thus calculated in powers df (see

Appendix E):
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‘Rpayv = Rpayv + /\ _1[(5vp Dy - 65 DV)DJ/\ + (gayDv - gavDy)Dp/]]
+ A°[(SF 9o — O, g,,)(0A)% + 2(6,0,A-470,M)0, A (4.8)
+2(g,,0,4-9,,0,4)0°A] .
Therefore, from (4.8) the transformation:

gKygAva f;;(,\ R ;gKy;gAVan ;RJ

auv auv PKA !

(4.9
of L from S, in (4.1) isgiven by
‘gKy‘gAV‘Rpayv‘RapK/l

+ 41 EROAY - 2(0,0°4)° ~((PAY - 4RO 0, AF  (4.10)
+ 817 F(0°A)(D°A)0,0,4 - (A (O°A)H- 24 17%(0A)",

= 1 (g"g"R%,R%,) + 81 °(R¥0,A0,4)

auv

Illustrating that the action S, isnot invariant under (4.2) unless A isascalar constant.
Similarly, the Ricci tensor transforms as

R, - ‘R, =R, —A™%(g,, 0%+ 0,0,A)

(4.11)
+ AP R0,A0,4 - g,,(02)°F,
so that
g"g"R,Ra ~ ‘9"'¢g"'R,'R,
= 1*(g"g"R,R,) - 24 (2R 0,A 0,4 - RA) w2
+ 2 AR (0,A) (0,4) - R(OA)? + 20°0°A)(0,0,4) +40%)°H
+ 42T HOA(D%A) - 40°A)(0°N)0,0,A8 + 12 A7°(0A)" .
We also find for the Ricci Scalar:
R -'R=A72R - 6A73(02), (4.13)
and therefore
R* - ‘R? = A™R? - 12A°R(0%A) + 364 °(0%1)2. (4.14)

As aresult, S and S, are also eliminated as possible actions from which to base a

conformally invariant theory.

However, by substituting the transformation rules derived above for R®,,, R,,,

Rinto (4.4) dong with (4.2), the definition of the Weyl tensor is thus viewed as the linear
combination that eliminates all terms involving derivativeson A. Hence, to construct a
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theory based on conformal invariance, the Weyl tensor is taken as the starting point given
that from L of (4.5):

o 2; KU )lv; o

gigK’ugAVCpquv kA g g g J,qupK/] - g gKﬂgAVCP CC;)K/]! (415)

Note also that the combination:
gggk/xg/\v R lgjng/.“gAV = gngug/\v1 (416)

Isitself conformally invariant.

Field Equations
The field equations considered in the literature on conformal gravity (originating
from (4.5)) are derived with respect to a standard variational procedure. To consider this

variation first express C,,, C ff in terms of the Ricci tensor and Ricci scalar by solving
for the Weyl tensor from (4.4). The result is given by (Appendix E):

C’,., Co = (2R, R” —-iR* - R, RO%), (4.17)
so that (4.5) becomes:

0S
— = —(d* 2R, R” -iR*-R R /) =0. 4.18
ngv Jg/!v I q g ( - pm) ( )

However, before taking this variation, the linear combination above can be simplified

further using the Gauss-Bonnet linear combination to eiminate R’,,, R’ given that:

€ po€ TR, R, = R? = 4R R” + RS, RO (4.19)

papv Ok ' ™ OOy o uv

Substituting into (4.18) gives

JS loj K g 1% —_
= = ng fd q9°(R,, R” - 4R?+1e,,,6 ™R, R, ) =0, (4.20)

but since the last termin (4.20) Is the Euler topological invariant:

I d*qg g € o€ M“"7R""WR‘”[&,,7 =0, (4.21)
og,,

we may consider the following variation in place of (4.18):

20 1
d‘qg?c® C°* = -2 (d*qg*(R,, R” - iR?). (4.22)
é_gwjl u p M ngvI ( p 3 )
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The field equations resulting from (4.22) using the standard variational procedure are
given by (Appendix E):
5g": 0=3%R(R, - 19, R) - 2(R%,R",, - $0,,R,,R”)
+0°(R, - 49, R) - 20,0,R, - 20,0,R%7, (4.23)
+ g, 0,0,R” + %DyDVR.
and then using the Bianchi identities (4.23) is equivalent to the simpler form (see also
Tsantilis, et. a. [124] for identical results):

Wyv =0 = %R(Ryv - %gyv R) - Z(R;; Rappv - %gvapa RPU)

(4.249)
- 0*(R,, - 49, R) + 10,0,R.
However, these field equations differ from the those presented by MK [56]:
0=3%R(R, - 1g,R) - 2(R°,R, - 1g,R, R”
3(# 4#) (#p 49" p ) (4.25)

+0°(R,, - 39, R) - 0,(0,R + O,R?) - 30,0,R.

v
Removing covariant derivatives on the MK result for comparison to (4.24), (4.25) is
equivalent to

0= %R(R#V _%g#v R) B 2(R"y R, _%gvam Rpa)

, ., B ; e )1 (4.26)
+0°(R,, - 40, R) -2(R,R,, - R, R, ) - 30,0,R.
Although (4.26) is traceless, the field equations are incorrect. To gain insight on this
problem note that (4.24) and (4.26) would be equivalent provided that the auxiliary
condition (3.133) is satisfied if

ROR?,, = R%R,,.
We aso note that the spherically symmetric solution discussed by MK (discussed in
detail in the following section) satisfies (4.24) but does not satisfy their own field
equations. However, we view this as a relatively minor problem which probably
indicates that the field equations (4.26) were derived by MK using a “gauge gravity” type
Palatini procedure. Furthermore, Pawlowski and Raczka [125] have published field
equations originating from (4.5):

0= %R(R#V B %g#V R) a Z(R‘; Rilpv - %g#vaﬂ RPU)

(4.27)
- 0*(R,, - 39, R) + 30,0,R,

v
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that differ from (4.24) by the term, 0%(%g,, R), which should be 0%*(3g,, R), as given

in (4.24). The result of this incorrect factor of 2 is that (4.27) is no longer traceless, as

must be required by conformal invariance.

A Spherically Symmetric Solution
A spherically symmetric solution to the field equations (4.24) has been found by
Riegert [123] and expressed by MK [56] in the form:
ds® = B(r) dt* - B(r)dr? -r?dQ?
B(r) = 1-BC73 _ apyh ek, (429
r
where S,y,k are 3 independent integration constants. To smplify the analysis on (4.28)
we write B(r) inthe form:

kl 2
B(r)=1-— -k, +k;r —k,r", (4.29)
r

where k;, k,, k;, and k, are now four arbitrary (and assumed) independent constants.
Substituting (4.29) into (4.24) gives the result (Appendix E):
W, :2(k22 -2k, +3k1k3) 13 +r(k4r2 —k,r +k, —1)H3r5
W, =—(K? =2k, + 3k, )/ 3° [, +r (k,r? —kyr +k, ~1)F
W, ==2(k ~ 2k, + Kk, ) /3
W, =W, sin” 6,
and therefore if the field equation (4.24) is satisfied, we obtain a quadratic equation in k, ,

(4.30)

k,,and k, (k, istherefore an arbitrary independent parameter):

k2 -2k, +3kk, = 0. (4.31)
Solving (4.31), we find that
k,(2-k
k, = M (4.32)
3k,

which must hold for (4.29) to satisfy the field equations (4.24). Using (4.32), (4.29) is
expressed:
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k,(2-k
B(r) =1—M—k2+k3r—k4r2, (4.33)
3k, r

and then by comparison with (4.28) and (4.29) we identify:

k,=3B8y ; ks=y ; k,=k. (4.34)
Substituting into (4.32) we then recover the form of the MK solution (4.28). Note that
(4.31) could be used to eliminate k, or k, rather than k. :

k,(2-k
k, =1+ /1-3kk, or k, = % (4.35)
1

and these substitutions give back exactly (4.28) - providing no new forms of the solution.
By inspection of (4.32) and (4.35) there will be several special cases of (4.28) to
consider (the labeling of these solutions will be explained in the following discussion):

Schwarzschild:
k,=k,=k,=00 B(r) =1 - k/r, (4.36)
“Pseudo - Signature” Solution 1:
k;=k,=0; k,=2 0 B(r) = =(1 + k/r), (4.37)
No Label:
k,=k=00 B(r)=1-k/r -k, +kr, (4.38)

Conformally Flat 1:
k,=k,=0(k=0) O B(r)=1+Kk,r, (4.39)

where (4.36) and (4.37) originate from the two solutionskpiin (4.35), withk =0.

The fact thatk, = k is arbitrary should be apparent from the condition that (4.24)

vanishes as given by (4.31) - irrespectivé.oflhis freedom gives three additional forms

corresponding tk # 0:
Schwarzschild - de Sitter:
k,=k,=0; k, 20 0 B(r) = 1-k/r - k,r?, (4.40)
“Pseudo - Signature” Solution 2:
k, =0k, =2,k 20 0 B(r) = —(1+k/r +kr?), (4.41)

Conformally Flat 2:



71

k =k,=00 B(r) = 1+Kk,r —k,r2. (4.42)

Schwarzschild and “Pseudo - Signature” Solutions
To understand these cases from a more general viewpoint begin with the
Schwarzschild and “Pseudo - Signature” solutions. We see by inspection of (4.29) that

the Schwarzschild solution follows whek, =k, =k, - 0, and k, =2MG/c’.
However, a more general result is obtained by simply allowing:
B(r) =1-k/r - k,. (4.43)
Substituting (4.43) into (4.24) we get
Wy =2 (2K ) i +1 (K, ~1)g &
W, =2k (2-k, )13 g +r (k; )8

(4.44)
W, =2k, (2-k,)sn” 6/ 3?
W, =W, sn*8 ,
which is satisfied if
k2(2—k2) =00 k,=0 or k,=2, (4.45)

in agreement with the first equation of (4.35) whey= 0. Hence, thek, =0 (and
k = 0) case gives the Schwarzschild solution (4.36) with signaflirel,—1,—-1 , while
the k, = 2 case gives
B(r) = —(1+k/r), (4.46)

corresponding to (4.37):

ds? = —(L+k/r) dt® + (1+ k/r) " dr? - r2dQ?, (4.47)
Equation (4.47) is not equivalent to the Schwarzschild case - noting the unusual signature
combination of negative signs in front of two spatial and the time differentials, while only
one spatial term has a positive coefficient. To see that there is no correspondence with

the Schwarzschild solution note that (4.47) is not a solution to the Einstein-Hilbert field

equations since:

R, #0; R, =2, Ry, =R,,sin*6; and R = —4/r2(£0). (4.48)
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Since k is arbitrary we obtain (4.41) as the complementary “pseudo-signature” solution
#2 with k # 0. The special case (4.38) follows from (4.28) wiken O.
Conformally Flat Solutions

There are other nontrivial solutions to the conformal field equations (4.24). To
see this note that the vanishing of the Weyl tensor implies that the metric may be

expressed:

ct,=00 g, =A%), (4.49)

auv
where 17, is the Minkowski form of the metric. In such cases, Wg =0 field

equations are satisfied identically, which is not necessarily obvious. The reason is that
although a function (e.g. the Weyl tensor) could be made to vanish, the same does not

necessarily hold for its derivatives (i.e., the field equatitids). However, the

important thing to realize is that the field equations are conformally invariant under the

transformation of (4.2), ie., ‘g, = A(q)? (o J Therefore, by considering,
9 = /\Z(q)fyw, as a transformation of this form, the scalar fact®(n) passes through

theW,, =0 field equations leaving derivatives g, . As aresultC*, , =00 W, =0,

auv
and therefore solutions satisfying Nordstrom’s theory (recalling @fgf, =0; R=0)

and those satisfyin€”,,, =0 will be solutions tow,, =0. A consequence is that the

ouv
Pavelle-Thompson solution:

ds? = (L+k/r)7dt>— (1+k /r ) dr? —=r2dQ?, (4.50)
IS a solution to both the gauge gravity and conformal gravity field equations since
Nordstrom’s theory is implied by thét)(+) case discussed earlier in Chapter 3. The
origin of the conformally flat solutions “one” and “two” noted above stem from

C” , =0. These cases were derived earlier in Chapter 3 (see (3.114)) but do not satisfy

ouv
the gauge gravity equations. As a result, the conformally invariant theory of gravitation

also has nonphysical solutions - recalling that (4.50) gives 1/6 of the observed value for
perihelion precession and in the opposite direction (Pirani [95]). Another characteristic
of such spaces is that there will be no deflection of light rays. To see this note that the

null-cone is invariant under (4.2), i.e.
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ds®=0 - ‘ds* =0. (4.51)
Therefore, for the special case of a conformally flat space, the null geodesics of g, will
be identical to the null geodesics of 77,, and no deflection of light rays will occur.

However, the fact that (4.24) has nonphysical solutions (in addition to possibly physical
ones) does not necessarily rule out this formulation as a nonviable physical theory. For
example, in classical electromagnetism one obtains both advanced and retarded potential
solutions. But advanced potential solutions are considered nonphysical and therefore
discarded; the point is that nonphysical solutions to atheory do not necessarily mean that

the theory isincorrect.
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Chapter 5 Schwarzschild Dynamics

In the second part of the thesis the orbital dynamics of point particles in the
Schwarzschild and Reissner-Nordstrém spacetimes are investigated using techniques
from dynamical systems theory. The motivation for considering this analysis is to gain
additional insight into the physical and analytic structure of the solutions, particularly
with regard to the stability properties of the orbits. From the viewpoint of a bifurcation
analysis the Schwarzschild solution is singled out in one respect - the solution has the
lowest dimensional parameter space of all other black hole solutions of Einstein’s field
equations and is therefore the simplest to analyze. Therefore, although there are some
new qualitative results to report on the stability properties and classification of the
Schwarzschild orbits, the analysis presented in this Chapter will serve mainly as an
introduction to the Reissner-Nordstrom bifurcation problem which is considered in
Chapter 6.

In the first sub-section entitledrbital Equations, the equations of motion for test
particle orbits in the Schwarzschild geometry are derived. The goal in this section is to
not only outline and introduce the analysis that will be applied in later sections, but to
“tailor” the derivation towards a discussion emphasizing the bifurcation results. In the
following sub-section entitleBixed Points and Linear Sability Analysis, the phase-plane
analysis is developed and then applied to obtain the well-known value of periastron
precession. In the sub-section entitlBdase Diagrams, the Schwarzschild orbital
dynamics are analyzed based on the level curves of the dynamical state space. The
standard results are discussed but also an alternative viewpoint for analyzing the
dynamics is presented based upon the separatrix structure of the phase-plane. In this
approach, the critical relationship that occurs between energy and angular momentum at
the unstable orbital radius (i.e. the separatrix) summarizes the range of physically
possible orbits, and then a saddle-center bifurcation is identified while a dimensionless
parameter involving the angular momentum is varied.

Although the dynamical structure (i.e. the effective potential) is invariant between
the coordinate and proper time reference frames, the phase diagrams in each reference
frame are not identical. This is due to the existence of an additional phase-plane fixed



75

point that appears in the coordinate reference frame at the event horizon. This fixed point

IS obviously coordinate dependent, but must exist to explain the apparent “slowing down”
of objects (and redshift of signals) approaching the horizon boundary as seen by an
observer in the coordinate reference frame.

For comparison to the relativistic case, the corresponding Newtonian phase-plane
results are discussed in Appendix F. Finally, the phase-plane analysis is applied to the
kinematics of light rays in the Schwarzschild spacetime. The standard results are
discussed and then compared with the timelike phase-plane results. The added
significance of the photon orbits (in the phase-plane context) is that the equilibrium
points of the differential equations exhibit a transcritical bifurcation, i.e. a an exchange of

stability occurs at these parameter values.

Orbital Equations

The equations of motion for a point mass with rest mags, orbiting a
Schwarzschild black hole with ma$4,(assuming for simplicity that, << M ) originate
from the line element (derived in Chapter 2):

ds® = c®Adt” - A'dr® —r’dQ?
AN=1-r]r (5.1
dQ*=d&*+sn*6dg¢°.
Equation (5.1) is expressed using spherical coordinatesransl the Schwarzschild
radius obtained earlier in (2.80):
r,=2MG/c*. (5.2)
The Lagrangian is a constant of the motion:

L=4m,(ds/dr)*=4m,c?; 7 = proper time, (5.3)
and if the orbit is confined to the equatorial plage=(rr/ 2), L takes the explicit form
(t=dt/dr, etc.):

2L =1= A -ATr2 =122, (5.4)
From the Euler-Lagrange equations there are two additional constants of motion ((5.4) is
trivial; (5.5) and (5.6) arefirst integrals):
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E=Af; E=E/mc?, (5.5)

ILId$ =00 ALId¢ =3 =myr’p:J =3 /m,c>. (5.6)

Physically, E isthe energy required for an observer at infinity to place m, in orbit about

M (total energy per unit rest energy). J isthe angular momentum of the system (per unit
rest energy) and since this is constant, there will be no precession of the equatorial plane.

The physical interpretation of E and the value of r, given by (5.2) are checked in

the Newtonian limit which was also considered in Chapter 2. A dglightly simpler
approach for obtaining these limits is given by assuming only radial motion to obtain:

ds® =c’dr® = c®Adt> - A~'dr?, (5.7)
and then factoring c*dt® leadsto
dr* =dt®(A-A"v?/c?). (5.8)
Solving this equation for dt / dr =t, and then assuming the massisat res (i.e., v — 0):
f=AN2=(-r/r)?, (5.9)
Finally, substituting for t into (5.5) (in the limit of small r,) gives the result
E=(-r/r)} = 1-r /2. (5.10)
Comparing (5.10) with the Newtonian potential energy, the interpretation of E isin
agreement with the Newtonian result - provided that r, is given by (5.2).

Continuing with the equations of motion, use (5.5) and (5.6) to eliminate t and ¢

from (5.4) and then re-arranging algebraically gives the result:
F2/c? =(dr/ds)’ = E* - (1+c? 2 /r*)A. (5.11)
Noting the functional dependence of r on the equatorial angle (i.e. r=r(¢)0
t =(dr/ dg)@), (5.11) is further expressed in terms of the constant J. Furthermore, the
degree of this equation (in r) is reduced by making the change of variable: x=r,/r.
Simplifying algebraically then gives the result:
(dx/dg)’ = 20(E?-V2), (5.12)

where g defines the dimensionless parameter:
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0:%(@/05)2, (5.13)

and the effective potential is given by:
V2 =(1+ X2/ 20)A . (5.14)
Differentiating (5.12) with respect to ¢ then gives the standard second order equation in

dimensionless form:

d’x/dg* +x=0+3x*. (5.15)

Fixed Pointsand Linear Stability Analysis

A phase-plane and bifurcation analysis of (5.15) is considered by first converting
this second order, nonlinear, inhomogeneous, differential equation into two first order
equations by first introducing a new variable, y=dx/d¢ (x). For a genera
spherically symmetric metric of the form given by (5.1) (with A unspecified) the phase-
plane equations are given by

X =f(xy)=
y'= ggx, ;/; = i/[X/\ +(0+3x)(dA/dxX)] (519
which shows that if A isapolynomial of degree n, there will be n+1 fixed points, i.e.

equilibrium solutions of (5.17) obtained from x'=y =0 for x and y. For the
Schwarzschild solution, (5.15) reducesto
X=y

. (5.17)
y =3X

Z-Xx+0.

and the fixed points, X", are given by (denoting X = (X, Y)):

X = (1+I13T 60 O) 4 :(1—1/13? 60 ) (5.18)

Alternatively, by expressing y in terms of x using (5.12):
X' =y=+[20E%-(20+ x*)(1-x)]¥? =0, (5.19)
and then solving simultaneously: x' =y' =0, for E? and x rather than x and y, the

corresponding energies at each fixed point are expressed solely intermsof o':

2y . _20[1-40-(1-60)Y2] | 2y . _ 20[-1+40-(1-60)V2]
E1 1= [(1—60)”2—1]3 ’Ez 1= [(1—60)”2—1]3 !

(5.20)
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respectively.  Therefore, solving simultaneously for E? and x gives additional
information on the dynamics compared to the standard technique of obtaining only x and
y (e.g., Strogatz [126]; Tabor [127]). Furthermore, the phase-plane equations analogous
to (5.17) that result from the proper and coordinate time analysis considered in a later
section (and also in the Newtonian case) give non-physical roots when solving only for x
and y (i.e. do not correspond to the effective potential extrema). However, these

additional roots are eliminated by solving for E? and x as illustrated above and as
discussed below.

A general classification of the fixed points (5.18) is obtained from a linear
stability analysis (e.g., [128]). Essentially, this amounts to series expanding (5.17) about
an arbitrary fixed point in the small parameters. ox =x - x* and Jdy=y-y*.

Dropping second order terms, the resulting first order linear equations are expressed in
matrix form:

&\ (0,8 a8 (&) (0 1
oy) 29 d4,9) \dy) (ax-1 0

The general solution of (5.21) is therefore an exponential whose stability at each fixed

X\ _
ﬂ[é‘y}= A,_.0%x. (521)

X=X

point is analyzed by classifying the eigenvalues of the matrix A. Solving the eigenvalue
problem, we find rootsto

A=Al =0, (5.22)
but since A is 2 x 2, the characteristic polynomial may be expressed:
X-T1A+A =0, (5.23)

where 1 = trace A, and A = determinant A. The eigenvalues are rootsto (5.23):

A = L(rxNTP-4D), (5.24)

and accordingly, the exponential solutions to (5.21) are classified by the various regions
of Figure 1 (dots mark the location of the fixed points given in (5.18)).

Briefly, region | corresponds to a “saddle-node” fixed point, whose stable and
unstable manifolds (corresponding to positive and negative (real) eigenvalues,
respectively) are given by the eigenvectors of (5.21). Rdgiogpresents an “unstable

node,” i.e. 2 positive real eigenvalues with— 4A > 0; regionlll gives solutions having
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one (positive) real and one complex eigenvalue (“unstable spirals”), while refjions
and Ill" are the complimentary stable solutions of regidh'sndlll, respectively. The

“boundary” cases are given by = 4A (degenerate nodes and lines of fixed points) and
r=0, A>0 are “centers” giving periodic orbits in the phase-plane. A complete

discussion will not be given on each case since it is only rdgamd the boundary
separating regionsl and IlI' that are relevant for the analysis considered here (see
Strogatz [126] for additional discussion and examples).

T? = 4A

Figure 1 Eigenvalue Classification

By evaluating the matriA in (5.21) at each fixed point of (5.18), the following

classifications are obtained:

o 0 10
A|7€:§j1—760 OED T=0;A=-J1-60

" Saddle Node"

0 10
0 7=0;A=++1-60,

0
Al.=
|X2 ﬁVl_w 0 "Center"

corresponding to a “saddle” and “center-node” fixed point, respectively (see Figure 1 for

(5.25)

the placement of these points). As previously discussed, the linear stability analysis gives
an exponential solution about each fixed point with the phase-plane trajectories shown in
Figure 2 (the directions follow from (5.17) and are indicated by arrows).
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Physically, trgjectories about the center-node fixed point correspond to precessing
elliptical orbits (and will be used to obtain the value for periastron precession). However,
the saddle-node that appears is not predicted by Newtonian theory, but is due to an
unstable orbital radius originating from the r = term of the effective potential (5.14). As
a result of this instability, there are orbital effects not present in the Newtonian theory
which have been summarized in the literature (see e.g, MTW [93], p. 637). An
interesting consequence of the phase-plane approach to this analysis is that this result
comes out very quickly in the analysis as a secondary fixed point.

y = dx/ d¢

Figure 2 Linear Stability Phase-Plane

Periastron Precession

The periastron shift, A¢, of planetary orbits has provided one of the earliest and

most important experimental test of Einstein’s theory (see Figure 3). The lowest-order
relativistic contribution to the periastron precession was first calculated by Einstein [129]
to explain the anomalous perihelion shift of Mercury (the modern experimental value is
approximately= 43" per century). In binary systems the periastron shift is due to both
Newtonian and relativistic contributions. The most important Newtonian contributions
are due to gravitational interactions with other bodies and the quadruple moment induced
by rotation and tides. For example, the planet Mercury has an observed total periastron

shift of approximately 574 arc seconds per centuryd32t’ are due to other Newtonian
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contributions. For a detailed discussion of Newtonian effects on the periastron shift see

[130].
Ag
f\‘\ rTb 7 'E rperiastron

~

~

Figure 3 Schematic of Periastron Precession

More recent interest in periastron calculations is motivated by observations of
relativistic binary systems (e.g., [131]) and has remained an active area of investigation.

For example, Esteban and Diaz [132] have discussed higher order relativistic
contributions to the periastron shift due to spin-orbit and spin-spin interactions. Damour

and Schafer [133] have considered applications of these higher order contributions to

binary pulsar systems. Such calculations are further motivated by suggestions [134] that
neutron-star—black-hole and radio-pulsar—black-hole binaries could be detected in the
near future, and therefore observational evidence might soon be available to cross check
these astrophysical models.

The purpose of this section is to illustrate the phase-plane method as a
calculational tool to obtain the standard periastron precession value. These results are
then later generalized to a study of periastron precession in the Reissner-Nordstrom
spacetime in Chapter 6. As a brief review, in the standard textbook presentation of this
calculation [93] there are essentially two approaches taken to calculate its value from the
nonlinear equations of motion:

(A) approximate an elliptic integral,
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(B) aperturbative solution to the general relativistic equations.
Although (A) and (B) are the most common methods appearing in the literature, other
approximation methods do exist, e.g. Wald [93] considers small oscillations about an
elliptical orbit; Misner, Thorne, and Wheeler (MTW) [93] consider nearly circular orbits
and then later using the PPN formalism.

Here we simply solve (5.21) about X,. The system isrewritten here as:
oX' =90y, Oy = -w’ox ; w=(1-60)"". (5.26)
The solutions are centers corresponding to precessing elliptical orbits (see Figure 2):

OX(¢) = Acoswg + Bsinwg

. (5.27)
oy(@) = — wAsSnwy + aBcoswy,

with A and B arbitrary constants. Choosing initial conditions at the position of periastron:
Ox(0) = u, ; oy(0) =du(0)/ d¢ =0, (5.28)
(5.27) becomes
OX(#) = u(¢) = W, coscp
oy(¢) =U(g) = ~wusinwg,

giving a typical “center” solution about the fixed poiit.

(5.29)

As previously discussed, in “physical” space the orbitngf aboutM does not
close. However, the phase-plane trajectory given by (5.29) must close after a single orbit
since the system is conservative (ignoring radiative effects). Therefore, the period of a
single orbit,®, is defined from the period of the phase space trajectory given by (5.29):
wd=2n. (5.30)
Solving for @, and then substituting fat in the limit of smallo gives the result:
& =2mw" = 2+310. (5.31)
The Newtonian calculation gives only the first teidn,= 271, as expected. However, as
seen from (5.31), the Schwarzschild solution gives the correction:
2

A =3m0 = 677(GM / J) (5.32)

which is the standard value expressed in the “geometrized” system of units (i.e.,
G=c=1, r,=2M; see e.g., Shutz [1], p. 198) with, taken as unity (see (5.36) and

(5.37) for order of magnitude estimatescof.
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Phase Diagrams

In the preceding Section a linear stability analysis has been considered about each
fixed point. However, this procedure gives only “local” information on the general
relativistic orbits, and is in fact one shortcoming of the linear stability analysis.
Therefore, no correspondence can be made with parabolic, hyperbolic, or orbits near the
black hole event horizon using Figure 2 alone. However, since the equations of motion
are integrable as a result of the constants of motion that exist (i.e., (5.4), (5.5), and (5.6)),
a complete phase diagram may be constructed and then several “global” features of these
orbits may be deduced as a result. In addition, other qualitative features of the
Schwarzschild orbital dynamics may be derived from this diagram (Figure 4) as
discussed below. (Note: since the equations are integrable no chaos exists here.
However, if additional degrees of freedom are allowed the possibility for chaos exists;
see e.g. [135] for a discussion of chaos in relativistic orbital dynamics).

To obtain the complete phase-plane diagram, consider the “level curves” found by
taking the ratio ofx’ and y' from (5.17), and then integrating to get a conserved
guantity:

dy/dx=(Ex*-x+0)/yO y*=B+x>=x*+20X. (5.33)
The value of the constamf is easily found by comparison with (5.12):
B=20(E*-1), (5.34)
so that (5.33) may be alternatively expressed:

E*-1=(y*+x° -x°)/ 20 - x. (5.35)

In Figure 4, the level curves corresponding to different valuds af (5.35) are shown

with the effective potential (5.14) (wittr =%). These curves correspond to solutions of
(5.17) for various energies and initial conditions, and should be compared with the
approximate solutions given by the linear stability analysis of Figure 2. The vertical

dotted line atr,/r =1, labels the black hole event horizon.
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Figure 4 Complete Phase-Plane for 0 =1/9

Thevalue of o used in (5.35) has been greatly exaggerated to better illustrate the
qualitative features of the exact phase-plane. For a more realistic value of ¢ consider
Mercury’s orbit - taking the value di¢ over a single orbit and then using (5.32):

3o =0.104" 0 0=53x107°, (5.36)
or for the binary pulsar system discovered by Hulse and Taylor [131]:
3w=4 0 0=74x107, (5.37)
To check thato = § is a reasonable value in Figure 4, an upper bound may be placed on
o for the existence of stable or unstable orbits from either phase-plane fixed point. By
inspection of (5.18), it > 1 then no (real) fixed points exist for a given value of energy

and angular momentum. To trace the physical origin of this value and to understand the
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topological structure of Figure 4 from a more general viewpoint, note that when y =0 in
(5.35) the effective potential is obtained:
V2 -1=(x*-x%)/20-x. (5.38)
The locations of the stable and unstable orbits are found as usual by solving: .V, =0
for x, which gives identically (5.18). From (5.18) no extrema exist for o>1,
establishing an upper bound on o for stable or unstable orbits. For o = %, stable orbits
(smallest value of) and unstable orbits (largest value of) coincide at
r, =3, (5.39)
providing an inflection point in the plot of \7; -1 vs x as shown in Figure 5 for several
values of o (note: the standard presentations of this diagram are commonly displayed
as. V.2 -1 vs 1x; see eg. Wald, Ohanian and Ruffini, or MTW [93] for an alternative
parametrization using r, and j). But another critical value of o occurs when E? =1.
To see this, solve E2-1=0 using (5.20) to obtain o =1, as displayed in Figure 5.
Therefore, qualitatively distinct orbits exist based upon the following values of o:
O<o<i,o0=%,;,i<0<t;o0=%;0>%. (5.40)
For o> 1 there is insufficient angular momentum for m, to sustain an orbit, therefore
the mass simply falls into M and correspondingly, V.. has no extrema. The physical

significance of o =1 is discussed above (5.39). The physical meaning of the other

i

values in (5.40) are understood by analyzing the separatrix™ structure of (5.35).

Essentially, this corresponds to alimitation placed upon the types of orbits that may exist
before an unstable orbit is reached, and the kinematic classification of the separatrices as
distinct unstable orhits.

f using x rather than 1/x for the horizontal axis pushes the singularity at r =0 to infinity. As aresult, the
relative locations of fixed points are more easily scaled and plotted in the phase plane with this choice of
variables.

i also termed homoclinic orbit in the literature on nonlinear analysis.
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In essence, the separatrix gives a graphic representation of the critical relationship
that occurs between energy and angular momentum at the unstable orbital radius (see
Figure 6). For agiven angular momentum (o), the critical energy of the unstable orbit is

calculated from I% of (5.20). For the values of o plotted in Figure 5, these energies are

computed and marked with horizontal lines. Substituting these values of E?~-1 into

(5.35), the separatrices corresponding to (5.40) are plotted in Figure 6.

V2 -1 E’-1=4

fixed points coaesce:

bifurcation point & 0 = §

separatrices. - -------

Figure5 Schwarzschild Effective Potential

These distinct separatrices divide the phase-plane into four regions of motion for
0<o<i (o=4% isjust one special case in Figure 4). To begin, consider Figure 4 in the
region surrounding the stable fixed point X,. The oval traectory in this region
corresponds to an elliptical orbit and was used earlier to find the value for periastron
precession. A unique parabolic orbit occurs as the phase-plane trajectory just touches the
y-axis and separates the hyperbolic and elliptic orbits. The hyperbolic orbit” is

characterized by a trajectory approaching M from infinity, but then returning to infinity

f these are actually precessing hyperbolic orbits if one alows negative r values. Although nonphysical,

these are shown to theleft of they-axisin Figure 4.



with constant dr/dg.

Therefore, the separatrix of Figure 4 (typical for o<4i)
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corresponds to a critically unstable hyperbolic orbit that separates trgectories spiraling
into M (above the separatrix) or escaping to infinity (below the separatrix).

Similarly, as illustrated in Figure 6 these separatrices are summarized according
to the following values of ¢ as distinct unstable orbits:

0< o <30 unstable hyperbolic,
o =10 unstable parabalic, (5.41)
<o <%0 unstabledliptic.
It is obvious from Figure 6 that for o inthe range: 1 <o <%, only elliptical orbits are
possible (about ;) before the unstable orbit is reached, while the case 0< o <1 allows
all three: hyperbolic, parabolic and elliptic as discussed above.

O<o<3 /
2}~

/
, N

’
S
-0.2

N
X
%<a<
2

-0.2

0.5
Figure 6 Separatrices for Selected Values of o




88

But these results are consistent with the orbital motion obtained from inspection of the
effective potential for different values of o in Figure 5. However, these qualitative
differences over the range of unstable orbits have not been pointed out in the literature.

It should be noted that a physical orbit corresponding to the separatrix can never
be achieved in finite proper time. To do so would imply that the phase-plane trajectories
change direction a X, which is not possible in a deterministic sysem. To see this,
consider the proper time equivalent of (5.35) (this is (5.11) after rewriting the equation

using the definition of o in (5.13) and againusing x=r,/r):
(dr/ds)* = E2-1+(xX*-x?)/ 20 + X. (5.42)

Separating variables gives an elliptic integral:

cT = J_rjdr/\/(E2—1)+x—x2/20+x3/20’, (5.43)
which divergesto £ asr approaches the unstable orbital radius r, of (5.18) (and (5.20)

is substituted for E?>-1), i.e. for a particle approaching the saddle-point along the
separatrix.

From the separatrix analysis it is apparent that a bifurcation occurs at the critical
value g =1/6, i.e. the topological structure of the phase-plane changes as the two fixed
points move together, coalesce into a single fixed point, and then disappear from the
phase-plane as o is further increased above the critical value 1/6. Therefore, the
Schwarzschild orbital dynamics may be interpreted and analyzed as a conservative 2-d
bifurcation phenomena. Specifically, this bifurcation is a saddle-center bifurcation [136]
(see Figure 7), and summarizes the range of physically possible orbits that may occur as
the energy and angular momentum are varied for ¢ >0. But from a more general
viewpoint one should also consider negative values of o (athough it is clear that o <0
has no physical interpretation since o must be positive definite according to (5.13); note
also that o =0 in (5.17) gives the phase-plane equations for light rays - see (5.49)
below). For o <0 the two fixed points (equation (5.18)) exchange stability at o =0 as
shown in Figure 7. Therefore, another (transcritical) bifurcation occursat o =0 (see e.g.
Strogatz [126], pp. 50-52), followed by the saddle-center bifurcationat o =1/6.
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Finally, an interpretation of the phase-plane trgectories to the right of the
separatrix should be given, namely those trgjectories leaving and then returning through
the event horizon. These trajectories are clearly nonphysical since it is impossible for
any classical particle or light ray to escape from within the black hole horizon. The
origin of these tragjectories may be understood as a consequence of the symmetry of

(5.17) under the interchange: ¢ -~ —¢ ; y - -y, where ¢ - —¢, is due to the time-

reversal symmetry of the Schwarzschild dynamics. As a consequence, this system is

classified as reversible and gives the symmetry of Figure 4 (and Figure 6) about the x-

axis, but with the vector field below the x-axis reversing direction.

x* (o)
x,* _ saddle A % * and x,* are a
\ complex conjugate pair
! /
center N A
~— saddle
P o
X*
1 center o=0

(x,.* and x, * exchange stability)

Figure 7 Schwarzschild Bifurcation Diagram

Proper and Coordinate Time Analysis

In the standard analysis on relativistic orbital dynamics the proper time parameter
Is replaced by the equatorial angle as the independent variable. One advantage in this
replacement is to smplify the algebra of a perturbative analysis, and is a carry over from
the corresponding Newtonian analysis (see Appendix F). However, as far as the phase-
plane analysis is concerned there are no essential difficulties analyzing the dynamics
using the proper time (or coordinate time) as independent variables. To demonstrate the

f incidentally, 7(2 of Fig. 4 (and Fig. 3) is classified asanonlinear center, see Strogatz [126], p. 164.
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invariance of the effective potential between the proper and coordinate time reference

frames start with (5.11) to obtain the proper time result (note: using ¢ rather than 1
eliminatesthe x* leading term appearing below):
(r,/ c)’ X* = X[ E? = (1+ X* 1 20) A (5.44)
The corresponding coordinate time expression is obtained using: x=(dx/dt)f in
combination with (5.5) which gives
(r./ ¢ (dx/ ct)® = x(A 1 E) [E? - (1+ X2/ 20) A]. (5.45)
Solving (5.45) for E? gives the coordinate frame expression for the total energy:

X4(1+ X2/ 20)/\3

E? = .
XN —(r. 1 €)?(dx / dt)?

(5.46)

By inspection of (5.46), as dx/dt — O, the effective potential (5.14) is recovered, i.e.

V2 V42 =V2  isinvariant between the proper and coordinate time reference frames.

Therefore, the dynamical structure is invariant, or aternatively stated, the extrema of \75f

areidentical in either reference frame. However, the phase diagrams in each case are not
identical due to the existence of an additional “frame-dependent” fixed point that appears
in the coordinate reference frame at the event horizon (see Figure 8).

To summarize these results, the corresponding phase-plane equations analogous
to (5.17) in both the proper and coordinate time reference frames are derived by
differentiating (5.44) and (5.45), respectively. In each case the results are given by:

dx/dr =y =+x?*[E2 - (1+ x2/20)/>]”2 (5.47)
dy/dr = x*[7x® - 6x* +10x0 + 80(E* -1)]/ 40,

and

dx/dt = y = £x2AY2[E2 - (1+ X%/ 20) A2/ E

dy/dt = 3A[9X* —15x° + 2 (3+ T 1+ X0 (&% - 11y & E*- 1)]/&4 .
Although (5.47) and (5.48) ae more complicated algebraically than (5.17), the

(5.48)

simultaneous solution of x =y =0 for E* and x in each case reduces to (5.18) and (5.20)

identically, but with another fixed point, x =0, at infinity and a x =1 in the case of
(5.48). However, the fixed point at infinity exists for the Newtonian case as well, and is
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considered in Appendix F. The fixed point a the event horizon is obviously coordinate
dependent and does not correspond to any extrema of the effective potential.
Nevertheless, this fixed point has physical consequences for observers in the coordinate
reference frame - explaining the slowing down of objects and redshift of signals from
objects approaching the event horizon.

Vi -1
event horizon
1
1
/_\ |
1
1 —_
0.2 0.4 0.6 0.8 :x—rS/r
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1
1
1
1
1
1
1
y=ax/dr Proper Time :
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1
dliptical :
1
————— 1
L X=r/r
1
1
1
1
1
1
1
1
y = dx/dt parabolic :
1
1
1
1
1
1
XS /T
1
1

Coordinate Time

Figure 8 Proper and Coordinate Time Phase Diagrams
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As discussed below (5.20), there are additional non-physical roots obtained when

solving x =y =0 only for x and y. The non-physical nature of these fixed points is due

to the fact that there must be a constraint placed upon E when 7 or t is used as the
independent variable. Solving simultaneously the expressions for y given in (5.47) or
(5.48) gives the proper constraint on E, and as a result forces these fixed points to
coincide with the extrema of the effective potential. This is also a feature of the

Newtonian dynamics when using t as the independent variable (Appendix F).

Light Rays

The analysis of photon orbits in the Schwarzschild spacetime is a straightforward
application of the techniques discussed for timelike orbits. For light rays, dr =0, which

in turn implies that both E and Jare divergent from (5.5) and (5.6), although their ratio
remains finite. Asaresult, o - 0, and the phase-plane equations for light rays follow as
aspecial case of (5.17):

=+ [1/b? = x*(1- x)]"?

) (5.49)
X° =X,

1
Nlw «

X
y' =
where 1/b? = 20E?, is a constant expressing the dimensionless impact parameter, b, as
the finite ratio of E, J, and r,.
The simultaneous solution of x' =y =0 for 1/b* and x results in two fixed
points and the corresponding values of the impact parameter:
{x=2;1/b*=4} and {x,=0;1/b*=0C}, (5.50)
giving the standard results for the unstable orbital radius, x,, and the impact parameter at

which this instability occurs. The fixed point, X,, is a center-node (at infinity) about

which the hyperbolic orbits “precess” and gives the standard result on light bending.
Therefore, the periastron precession of timelike orbits and light bending are actually
special cases of one another: in the timelike case this center node fixed point is at finite
and allows “real” circular orbits; but for light rays this fixed point moves to infinity and
gives the precessing hyperbolic orbits pointed out above. However, a phase-plane

calculation of light bending analogous to that discussed for the Schwarzschild case does
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not work here. This is due to the fact that a linear stability analysis (5.21) “kills” the
necessary terms; namely, the impact parantetesappears from the matrix (a similar

result occurs when calculating the period of a simple pendulum for large angles using this
technique).

The phase-plane level curves for light rays in Figure 9 correspond to different
values of1/b*. These are shown together with the locations of the fixed points and
photon effective potentialx®’(1-x). The most striking difference between the photon
and timelike dynamics (comparing Figures 9 and 4) is that the center node fixed point
moves to the origin ag — 0 (as discussed above). As a result, circular photon orbits do
not exist in any dynamical sense, but become circular in geometry as the orbits approach
the separatrix. To see this use the definitiog f the first equation of (5.49), and then

separating variables shows that— « as x » x, and 1/b® - 4/27 (this result is

analogous to the proper time divergence pointed out in (5.43)). Therefore, the separatrix
corresponds to the unstable “photon sphere” that is commonly discussed in the literature
(see e.g. Ohanian and Ruffini [93], p. 410).

The physical interpretation of the various phase-plane regions of Figure 9 is
similar to that of Figure 4, but there are important differences. For light rays with impact
parameterl/b’ =0, these orbits just graze the event horizon from the inside and
simultaneously (in an unrelated trajectory) reach the center node fixed point of the
effective potential (see Figure 9). Fbfb*<0, b loses its interpretation as an impact
parameter since the trajectories in this case originate from the singularityGatind lie
within the horizon. Forl/b*<4/27, the trajectories are confined to within the
separatrix and correspond to the light rays arriving from infinity, reaching a turning point
(given by the appropriate root of the first equation in (5.49)), and then return to infinity as

discussed below (5.50). Fdi/b*>2%, a photon arrives from infinity (above the

separatrix) and then falls through the event horizon. The corresponding time reversed
trajectories are given below the separatrix. The trajectories to the right of the unstable
orbital radius of Figure 9 are also interpreted as time reversed paths that reach a

maximum distance from the event horizon and then return to the singularity.



94

event horizon

event horizon

hyperbolic
trajectories
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Chapter 6 Reissner-Nordstrom Dynamics

As discussed earlier in Chapter 2 the Reissner-Nordstrom solution is the exterior
solution of a spherically symmetric charged distribution of matter that has collapsed to
form a black hole. The line element was derived earlier and listed below in
Schwarzschild coordinates:

ds® = Adt?> —-A7dr? - r?dQ?

6.1
AN=1-x+x*12A; x=r]r, ©-

where dQ”=d@”+sin*8d¢?; A and o are the dimensionless parameters defined
earlier in Chapter 2 (equation (2.100)):

2

¢ o.d_26omd

26keH ™~k He B (6.2

From a strictly dynamical viewpoint, the Reissner-Nordstrom solution exhibits a much

A=

richer orbital structure than the Schwarzschild case - yielding three fixed points whose
relative positions and stability properties in state-space are determined by the values of
black hole charge and orbital angular momentum. The purpose of this Chapter is to solve
the bifurcation problem for the Reissner-Nordstrom system, i.e., to present a summary of
the phase-plane topological structure based on a study of coalescing fixed points and to
find the parameter values at which these bifurcations occur. The separatrix plays an
important role in the analysis by distinguishing the dynamical regions of the phase-plane
at given values of the black hole charge and orbital angular momentum. The main
difference as far as the separatrix is concerned (compared to the Schwarzschild case) is
that the Reissner-Nordstrom separatrix is dependent upon the black hole charge, but the
structure of the separatrix resembles closely the Schwarzschild separatrix and therefore
can be used in a similar way to base a qualitative classification of the orbital dynamics.
The main results of this Chapter will be a discussion and graphical analysis of orbital
stability which is presented using the bifurcation diagrams as discussed below.

As discussed in a later section of this Chapter, the presence of charge reduces the
periastron precession compared to the standard Schwarzschild result. Therefore, an

obvious experimental measurement of the gravity induced solar charge considered by
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Eddington [77] and Harrison [79] could be based on observations of perihelion advance.

In fact, Burman has considered this application to Mercury’s orbit using estimates of the
solar charge given by Bailey [137], but concludes that the correction made to the
Schwarzschild precession value is negligible. Subsequently, Treder, et. al. [138] have
discussed perihelion advance in the Reissner-Nordstrom spacetime as a means for
estimating the solar charge based on accurate perihelion data for planetary bodies.
Following Burman, Teli and Palaskar [139] also consider the effect of a net solar charge
on the perihelion advance of Mercury’s orbit (as well as to the orbits of Venus and
Icarus). But the difficulty in such measurements is that the Schwarzschild precession

value is very small to begin with (at least in the solar system; see equation (5.36)).

Orbital Equations and Fixed Points

The Reissner-Nordstrom and Schwarzschild solutions are both spherically
symmetric and static and therefore the constants of motion and orbital equations obtained
for both solutions have the same general form. The essential difference arises only from
the form of A . As a result, the phase-plane equations for the Reissner-Nordstrom system
are obtained from (5.16) and (6. ¥ %r./r; X =y=dx/d¢):

X=y

Yy ==x/A+3x*/2~-(1+0/A)x+0, (63)
defining the equatorial motion of a non-charged unit point mass orbiting a charged
spherically symmetric black hole. For comparison and later reference the dimensionless
parametersoc and A are listed together (defined in equations (5.13) and (2.100),

respectively):
o =1(c?)(r,/3)% A=4(c*IGK)(r,/€)’. (6.4)
The Reissner-Nordstrom fixed points are the roots of a cubic equation while the

Schwarzschild fixed points result from a quadratic. As a result, the Reissner-Nordstrom
fixed points (and resulting dynamics) are considerably more complex algebraically. The

fixed points, X", are obtained fromx' =y =0, and expressed in the form (denoting

X" =(x,y"); note thaty" =0):
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X =Al2+aly” +g° /(2"°B)
X, = A12+(1+iv/3)/(69°) +i (1+i+/3) g* /(27 (B) (6.5)
X, = A 12+ (1+i/3)/(6g°) =i (1+i~/3) g° /(2"* [B) ,
where i is a complex factor resulting from the cubic equation, y'=0. For brevity, the
following substitutions have been defined in (6.5):
g=2b+ \/m

a=312 - 4} + 0); b= 271> -54(A% - A0) (6.6)
C=A2(N? =21 +20); d =-912 +12() +0) .

Parameter Space

The bifurcation problem for the Reissner-Nordstrom system consists of
determining all possible parameter valuesjofand o that correspond to coalescing
fixed points. A solution to the problem is thus given by basing an analysis on the

descriminant of the cubic equatiofi=0. For reference, the descrimindhiof a general

cubic equation:

x*+ax*+ax+a =0, (6.7)
Is given by (for instance, Abramowitz and Stegun [140]):
D=qg’+p°, (6.8)
where
q=4%1a,-%aj; p=i(a,a,-3a,)-%a;. (6.9)

and therefore, the Reissner-Nordstrom descriminant simplifies to
Dy, =[° - 2A(A - %)0”+34°(94° -21) +8)0 - A°(A - £)H27. (6.10)

The roots of (6.7) are thus classified according the sign of the descriminant:

D >0: 1rea and 2 complex conjugate roots
D =0: 3rea roots, but at most 2 distinct (a bifurcation point) (6.11)
D <0: 3red distinct roots.

By an application of (6.11) to (6.5) the bifurcations of the Reissner-Nordstrom fixed

points are identified according to the numerical valuesDgf. But note that a

bifurcation analysis of the Reissner-Nordstrom system based on (6.11) is complicated by
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the dual parameter dependence of D, . The solution to this difficulty is given by
eliminating o using the descriminant of (6.10) (i.e., the descriminant of the
descriminant). This secondary descriminant (of (6.10)), D, , smplifiesto
D, =(45/ 32’ (A -2)(A-£)*/ 2, (6.12)
and therefore the o, roots of (6.10), corresponding to the case, D, =0, are expressed in
the form:
0,=A(3A/16-1) - 30 /1637 + 333"
0, =A(31/16-1) - 3(1+i/3)a /323" +3i(L+i/3) 1 ° B° (6.13)
0, =A(31/16-1) - 1-i/3)a/32B° -3i(1-i3) 1 3* ,
where a and [ arefunctionsof A:
a=A33U -64) 1 3 (6.14)
B =—47A% +352) =512 +16(A - 2)* (51 - 8)".
Solving D, =0 impliesthat the o, areall real but with only two distinct at the parameter
values:
A ={0, 8/5, 2}. (6.15)
In Figure 10, Re(o,) vs. A is plotted to demonstrate the classification of (6.13) based on
(6.11) (dashed lines indicate the location of complex roots).

g
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-4 = 1611+3/3)
- - 47

Figure10 Re(o,) vs. A
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An additional parameter value of interest is given by A =16/9. At this parameter value
(6.10) becomes quadratic in o when D,, =0 (but D, <0 which impliesthat the o, are
all real and distinct). Asaresult, the numerical valuesof A:
A, ={0% % 2, (6.16)

when combined with (6.13) give the following values for o, :

A, =000,=0,=0,=0

A,=8/50 0,=0,=8/250,=-4

A,=16/90 0,=0.275,0,=-38,0,=0

A, =20 0,=1/4,0,=0,=-2.

(6.17)

The point of intersection between Re(o,) (toward the right of Figure 10) is obtained by
solving
Re(o,) = Re(0,;) U (B-31)A+64=0

0 ={ 0, 16(11+3J§)/47=5.5} , (6.18)

where [ isgiven by (6.14). The second root of (6.18) gives the desired result but has no
special significance for the dynamicssince D, , >0 impliesthat o, and o, are complex
conjugate (thisisregion | of Figure 11).

These results are further clarified by Figure 11 which defines the Reissner-
Nordstrom parameter space. The bold line is given by the implicit soluti@ of O
and divides the space into the seven physically distinct regions labeled in the Figure.
Each segment of this line corresponds to the appropriate real rant a$ labeled in
Figure 10. The bifurcation points (6.17) are given by the intersections of this curve with

the A, of (6.16) and marked in the diagram with small circles. To summarize Figure 11,

different regions of the Reissner-Nordstrom parameter space correspond to the separate
cases of (6.11), which in turn distinguish the stability properties of the fixed points [note:

the numerical valued =(-1,+1 A >2) in Figure 11 have no special significance other

than as generic parameter values used to illustrate the dynamics in the indicated regions].
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Figure 11 Reissner-Nordstrom Parameter Spddeg) .

It should be noted that the origin of the parameter space in Figure 11 is
alternatively expressed in terms of Catastrophe Theory [141] which views the parameter
space as a 2-d projection of a 3-d object whose surface is defined by the critical points of
the effective potential. The folds in the surface correspond to the set of degenerate
critical points (termed the singularity set in Catastrophe Theory). The significance is that
the degenerate critical points mark a change of stability in the potential which is why the
regions of Figure 11 are dynamically distinct to begin with.

The interpretation of the regions of Figure 11 are simple to deduce from the
parameter values (6.4). The only physical possibilities are gived and o both
positive (regions VI and VII). Therefore, regions | - V are clearly nonphysical (the
charge and/or angular momentum are complex valued), but as discussed in the next

section, the underlying dynamical structure of regions VI and VII is more easily
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identified by considering the analysis for all regions of the parameter space. For
reference, the first integral, E, isidentical in form to the Schwarzschild equation (5.12):
(dx/dg)’ = 20(E?-V2), (6.19)
and the effective potential has the same general form:
V2 = (1+ %2/ 20)A. (6.20)
Equivalently, the effective potential is obtained from the expression for Reissner-
Nordstrom level curves (listed below) g&s- O:

E2-1=(y?+x>=x%)/20-x+(x"/ 20+ X2)1 2A, (6.21)

Schwarzschild

Bifurcation Analysis

As discussed earlier in the Schwarzschild case, the stability properties of the fixed
points are obtained by linearizing (6.3) and then classifying the resulting eigenvalues.
But for the Reissner-Nordstrom system this approach is formidable algebraically and not
very instructive. A more direct approach is to consider a graphical analysis that is based
on the level curves of (6.21) in combination with the vector field of (6.3) and the
effective potential at specific parameter values. The main results from the linear stability
analysis are summarized by the bifurcation diagrams obtained by plattirigr fixed
values of A, while varying the orbital angular momentum. By including the limiting
behavior of these dynamics (i.e., @0) — ), all regions of the parameter space are
covered in the analysis. These results are summarized in Figures 14 — 28 and in the
discussion below. Samples of tMathematica code (Wolfram [142]) used to obtain

these results are listed in Appendix G.

A<0

First consider a cross section of the parameter spage-atl (Figure 11). This
parameter value is arbitrarily chosen to easily display the (graphical) locations of fixed

points and generic behavior of the dynamics across regioghsandlll. The bifurcation

diagram is given in Figure 16 by plottif@e(X’) vs. o. In summary forA <0, o, is
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real while o, and o, are complex conjugate (D, >0). Therefore, g, separates regions |
and Il asillustrated in Figure 11. Referring to Figure 11, begin first &t o <0 aong the
line A = -1 and then proceed upward from region I11 to Il and then finally to region I.
Region |1 is characterized by D, <0 and therefore, the fixed points are real and
distinct with the following stability properties: at A =-1, x; is an unstable saddle node
(Figure 12) converging to the numerical value, X, - -1 as 0 —» —o, while x, and X;

are center nodes diverging to + oo, respectively.

Figure 12 Phase Diagram for A =-1; g <0 (regionl1l).

Asboth 0 - -0 and A - -, X/ is an unstable saddle node diverging to —co while

X, and X, remain center nodes diverging to + oo, respectively.
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The parameter value, o =0, gives a transcritical bifurcation point dividing regions 11 and

I11 and marks an exchange of stability between x;, X, and x;. Asinregionlll, D,  is
also negative in region |1 and therefore the fixed points are real and distinct but now x; is

acenter node while x, and x; become saddlesin region I (Figure 13).
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Figure 13 Phase Diagram for A =-1; 0<o < g, (regionll).

At 0 =0, D,, =0, and a saddle-center bifurcation [136] occurs as the x; saddle node
and x; center node merge together into an unstable degenerate inflection point as

illustrated in Figure 14, however, X, retains its stability as a saddle node.
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Xx=r,lr

Figure 14 Phase Diagramfor A =-1; 0 =0,.

Inregion| (Figure 15), o > o,, D,, >0, and therefore, according to (6.11), only one real
saddle node fixed point remains and is given by x,. But interestingly, a gseudo”
transcritical bifurcation occurs ar =7/4 as x; and x, become complex conjugate

while X, and x; exchange rolesx; becomes real at this parameter valublpt¢ the

term pseudo is used to indicate that an exchange of roles occurs - not an exchange of
stability. In this case, it is the switching of real and complex conjugate roots that takes

place while the dynamical properties of the system remain invariant].



105

2
3 Ve —1
.2
X2
1
X=rylr
4 -3/-2 -1 1
-1
-2
X=rlr

Figure 15 Phase Diagram for A =-1; o > g, (region|).
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trg?jfégt'ic;: bifurcation takes place

Figure 16 Bifurcation Diagram: A = -1.
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As o isfurther increased to +o, x; — —1 isthe only real fixed point while x;
and x, remain complex conjugate with Re(x ) = Re(x;) converging to -1/4. A
complementary limit of the Schwarzschild bifurcation diagram (Figure 7) is thus obtained
as A - —o and x, divergesto — asacenter node, while x; (<0) and x; form saddle
and a center nodes, respectively. For comparison, the true Schwarzschild limit is
obtained as A - +o. Inthiscase, x; issaddle node (>0) while x, isacenter and X;

divergesto +o0 asacenter node (this case is discussed in more detail for A > 2).

A “Pseudo” Transcritical Bifurcation Point

Before discussing the bifurcation diagrams corresponding to positive values of A,
the structure of these dynamics will be more clearly illustrated by following the location
of the pseudo-transcritical point as A is varied. The location is found analytically by
solving for o from the equation:

Re(x,) = Re(x;) 0 A-(B+63C)" =0 (6.22)
where
A=-9A%+12) +120; B =27A°-54A% + 5401 6.23)
C=9(60 —DA* +(16-1260)A° + 30 (16— 30)A* + 480°A +160°.
There are two solutions:
0, =3A(A-%), g, =-31(1-2), (6.24)

which are plotted in Figure 17. The o, solution locates the pseudo-transcritical point
which has a minimum value at o =-1/3, while g,, locates the crossing point between
Re(x) =Re(x,) and X, (the maximum is a ¢ =1/2). This crossing point and the
pseudo-transcritical point a8 o =-1/4 ae marked in Figure 17. The points of
intersection between o, and o, determine the two totally degenerate bifurcation points
of the Reissner-Nordstrom system given by

(0=8/25;A=8/50 x =x,=x,=4/5, (6.25)
and

(0=0;2A=00 x =x,=x,=0. (6.26)
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The interpretation of the bifurcation point (6.25) corresponds to timelike orbits
about a singularity with no horizons (A <2). The parameter value (6.26) is a limiting
case of the dynamicsthat is interpreted as corresponding to photon orbits (o = 0) about a
singularity possessing an infinite charge (A =0). However, it should be clear from the
earlier discussion on the cosmic censorship conjecture that the labeling used for either
bifurcation point is based solely on the parameter values and is not expected to

correspond physically to any “real” dynamics. As- 0 from the left, theo, root
separating regions | and Il, and the complex conjugate exchange point betwaad
X; both converge to zero. Therefore, the transcritical, saddle-center, and pseudo-

transcritical bifurcation points merge together to form a stable center-node bifurcation
point atA =0 =0. This case is discussed in greater detall in the later section describing

the Reissner-Nordstrom null geodesics.
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0<A<8/5

For 0<A<8/5, the pseudo-transcritical and saddle-center bifurcation points
separate from the transcritical point and are given by o, of (6.24) and o, of (6.13),

respectively, at negative values of o. Figure 21 summarizes these dynamics across
regions 1V, V, and VI of Figure 11. The structure of Figure 21 is similar to the
bifurcation diagram of Figure 16, but the dynamics at these parameter values are quite

different. For example, D,  is negative in both regions Il and IV, and therefore, the
fixed points are real and distinct. However, the stability is reversed in region 1V (Figure

18) as A changessign: x; isnow acenter node convergingto x;, - 1 as o - —o, while
x, and x, are saddles nodes diverging to o, respectively.
V2 -1

8
6

S X
2

Figure 18 Phase Diagram for A =+0.6; o <o, (region V).
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A saddle-center bifurcation occurs crossing into region V at o,, but the stability of x;

and X, is reversed compared to Figure 16. The phase diagram at these parameter values
isillustrated in Figure 19

* 72
X r Vg —1

@
-3 - -1

Figure 19 Phase Diagram for A =+0.6; 0(<0) =0,.

Inregion V, X, isthe only real fixed point (a saddle node; the phase diagram in
this region is similar to Figure 15) while x; and x, are complex conjugate until the
pseudo-transcritical bifurcation occurs a 0, <0. Once again, X, and X, become
complex conjugate while x, and x; exchange roles (x; is real at this parameter value

and is now a saddle node). As a result, the transcritical bifurcation point &t o =0

(dividing regions V and VI) marks an exchange of stability for x; to a center node
converging to +1, while x; and x, remain complex conjugate with real parts converging
to 1/4 as 0 - +o. Compared to Figure 16, g, marks the crossing point of the real
components of x, = x, and x;, which does not occur for A <0. Inregion VI, D,, >0,

and therefore, x; isthe only real fixed point that remains. Based on the parameter values
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of region VI, solutions about this fixed point are interpreted dynamically as giving
periodic timelike orbits about a singularity with no horizons.

2 A

16

1

5 . o X=rlr

X=rlr

Figure 20 Phase Diagram for A =1; g =1 (region VI).
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"pseudo”
transcritical:

X; and x; exchange roles

Figure 21 Bifurcation Diagram: A = +1.
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The parameter value A =8/5 gives a totaly degenerate bifurcation point
(equation (6.25)). The significance of this parameter value for the dynamics is seen by
following the evolution of Figure 21 as A is increased to 8/5. As pointed out earlier, the

o, pseudo-transcritical point reaches a minimum value (o, =-1/3) a A =2/3, reverses
direction, and then reaches zero at A =4/3 (see Figure 17). As A is further increased,
o, is positive and approaches o, . To better illustrate this behavior, the bifurcation
diagram for A dlightly less than 8/5 (= 3/2) is given in Figure 22. Finally, a A =8/5,

the pseudo-transcritical point, og,, and the crossing point of the rea and complex
conjugate roots, o,, , merge together to give the bifurcation diagram of Figure 23. At this
parameter value the o, are real (equation (6.13)) but with only two distinct
(0, =0,=8/25), and form the cusp point in Figure 11, while o, has a minimum value
a —-4. For g >8/25, the stability properties of the fixed points are identical to those
discussed for region V. But in this case, the real parts of x; and X, converge to 2/5 as
o - +oo, while x; remains a center node converging to 8/5. The dynamics and

periastron precession at this cusp point are discussed in the section of this chapter entitled
Orbital Precession About a Bifurcation Point .

X, saddle .
X
XI center .
X3
0. * - X* 1
2 X _
I XI = X;
1
6 -4 2 ! 2
| o(A
i ()
o
saddle these points merge
X" _2 together at A =8/5
2

Figure 22 Bifurcation Diagram: A =3/2.
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* -2

Figure 23 Bifurcation Diagram: A =8/5.

8/5<A<16/9

For 8/5<A<16/9, the o, ae al real and distinct (D, <0) as the cusp

bifurcation point separates into two additional saddle-center bifurcations — the first given

at o, — tending toward zero while the second is givendyy(see Figure 11). As
illustrated in Figure 11 and Figure 24, region VII corresponds to the intérvadr < g,

and consists of three real fixed points: a sadd]g, (center ), and a saddlex;). At

A =16/9, the g, saddle-center moves to the origin and combines with the transcritical
bifurcation ato =0 as shown in Figure 24 to form an unstable degenerate inflection
point at x, =x; =4/3. The phase diagram for these parameter values is illustrated in
Figure 31. Therefore, two transcritical and three saddle center bifurcation points exist at
A =16/9. Asymptotically, aso - -, x, — 16/9 while x; and x; are saddles nodes
diverging tot o, respectively. Ato - +o the real parts ok, and x, converge to 4/9

while X, =16/9.
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N saddle

Figure 24 Bifurcation Diagram: A =16/9.

The bifurcation point a& A =2 (Figure 26) is more clearly illustrated by an
intermediate bifurcation diagram at A =1.99 shown in Figure 25. For comparison, at

16/9< A <2, the g, saddle-center bifurcation is decreasing, while simultaneously, the
o, saddle-center isincreasing toward o, . In the intermediate region between o, and o,
of Figure 25, x; and x; are complex conjugate while X, is a saddle node (this is region
V of Figure 11). At A =2, the g, and o, roots merge together into an usual “saddle-
center-saddle-center” bifurcation point of Figure 26aat=0,=-2; o0,=1/4. For
A>2 (Figure 27), thex, and x; fixed points separate leaving a transcritical ¢at 0)

and a single saddle-center bifurcation pointrat o, .
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Figure 25 Bifurcation Diagram: A =1.99.
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Figure 26 Bifurcation Diagram: A =2.
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Figure 27 Bifurcation Diagram: A >2 (=2.1).

The Schwarzschild limit is obtained as A — . Inthis case x; divergesto +o giving
the bifurcation diagram of Figure 7. For large A (and ¢ <<1) the fixed points (6.5) are
series expanded to first order in A™ giving (Appendix G):
2_0+ 2(4+30) +O()17?)

=3 27

X, =0+ Eg’ _/\lﬁgz +0(A?) (6.27)

2 3
o4+ =

2/\_2(4+30)

271
which is consistent with the o <<1 expansion of the Schwarzschild fixed points

X, == +0(47),

X =2/3-0 and x,=0. For comparison with the Schwarzschild case the Reissner-
Nordstrom phase diagram for a typical parameter value2 is given in Figure 28.
Considering the fixed poink;, the result in (6.27) indicates that the effect of adding a
small charge to the black hole is to decrease the radius of the unstable orbit. Similarly,

the A~ term in the expression fax, gives a subtractive contribution and therefore the

radii of circular orbits will increase (see also the expansionxjogiven by (6.34)).
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The locations of the horizons (given by (2.101): x, = A im =r/r.) are
also illustrated in the Figure noting that x, =x_=2 a A =2 which coincides with the
fixed point x; =2 at these parameter values. The causal and dynamical interpretation of
the orbits both in and about r, and r_ have been previously discussed in the literature

(for instance, Chandrasekhar [68], pp. 209-217) and are not included in this investigation.
Here we have considered only the Reissner-Nordstrom bifurcation problem and a linear

stability analysis about the orbital fixed points.

Vefo - 1 r+ r

\ ™

0.5

<
|
Q|
§

eIIipticaI\-

hyperboli c%

separatrix

parabolic

Figure 28 Phase Diagram:>2 (=2.1); o0 =1/9.
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Separatrix

The separatrix structure of the Reissner-Nordstrom dynamics is similar to that
discussed earlier for the Schwarzschild case. As pointed out earlier in Chapter 5 - a
classification of the dynamics that is based on the distinct separatrices that occur
corresponds to the limitations placed upon the types of orbits that may exist before an
unstable orbit is reached, and the kinematic classification of the separatrices as distinct
unstable orbits. The separatrices themselves are therefore classified kinematically as
unstable hyperbolic, parabolic, and elliptical orbits. The main difference between the
Reissner-Nordstrom and Schwarzschild separatrices is given by noting that in the
Reissner-Nordstrom caseg =o(A) as given by (6.13). For comparison, the earlier
classification of qualitatively distinct orbits from Chapter 5 (equation (5.40)) based on the
values ofco s listed below:

O<o<i;o=%;i<o<i;o=%;0>%. (6.28)
Although a generalization (5.40) may be considered for all ofAthealues considered
earlier for the bifurcation analysis, the cake 2 is the parameter value which may be
compared to the Schwarzschild case. Therefore, the bifurcation diagram of Figure 27
applies to give a classification of the fixed point stability properties. The appropriate

generalization of the bifurcation point is thus given &y(A) with the limiting value
displayed aboveg, (A =«) - 1/6, as the charge goes to zero. The generalization for the
value of 1/8 (the binding energy of the orbit is equal to the rest mass eneargyatfthis
parameter value) is more complicated to obtain algebraically, but in principle could be
obtained by solving foo = g(A) from:

V2 —1= 0 =(1+ X2/ 20) (1- x+ X2/ 2) -1, (6.29)
at the unstable fixed point, x=x;. Denoting this value of o by g,,(A) (for ‘unstable

parabolic’), the appropriate generalization of (5.40) has the form:
O<o<o,(A),;, o=0,); o,(1)<o<ag,(A
w(A) p(4) 5 0, (A) 1(4) (6.30)
0 =0y(A) ; 0>0,(4),
and therefore the dynamics could be similarly classified as discussed earlier for the

Schwarzschild case.
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Periastron Precession

Periastron precession in the Reissner-Nordstrom spacetime has received a
surprisingly scanty treatment in the previous literature. Bronstein [143] was the first to
discuss the effects of charge on the periastron advance, but as pointed out by Kudar [144]
Bronstein’s result was based essentially on a special relativistic calculation and shown
later to be incorrect. Subsequently, an analysis of charged particle motion incorporating
the approximation method given by Einstein, Infeld, and Hoffman [145] was discussed
by Bertotti [146]. But a calculation of perihelion advance in the Reissner-Nordstrom
spacetime was not given until 1969 by Burman [147]. Burman later considers an
application of these results to Mercury’s orbit using estimates of the solar charge given
by Bailey [137] but concludes that the correction made to the Schwarzschild (perihelion)
precession value is negligible. Burman [148] subsequently analyzes the perihelion
advance of Icarus but considers a non-relativistic mechanism to explain the precession.

In a paper discussing the stability properties of circular orbits in the Reissner-
Nordstrém spacetime, Armenti [149] mentions briefly that the presence of charge should
have a subtractive effect on the periastron advance, although no calculation is given.
Barker and O’Connell [150] have generalized earlier results to the case of the charged 2-
body problem but give little discussion or interpretation of their results. Subsequently,
Treder, et. al. [138] have discussed perihelion advance in the Reissner-Nordstrom
spacetime as a means for estimating the solar charge based on accurate perihelion data for
planetary bodies. Following Burman, Teli and Palaskar [139] also consider the effect of
a net solar charge on the perihelion advance of Mercury’s orbit (as well as to the orbits of
Venus and Icarus). Finally, Rathod and Karade [151] discuss an alternative procedure for
calculating periastron advance using the Hamilton-Jacobi formalism - in contrast to
earlier calculations based solely on perturbative techniques.

In this Section the phase-plane calculation of periastron precession given earlier
for the Schwarzschild solution is considered for the Reissner-Nordstrom case. An order
of magnitude estimate is also given for the charge contribution to the periastron shift in
the limit that the charge contribution to the total mass is small. As in the Schwarzschild
example the calculation is based on the observation that the phase-plane trajectory about

the center nodes,, must close after a single period in phase space since the system is
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conservative. Therefore, the periastron advance is found by calculating the period of a
phase-plane orbit, ®:
®=2nw™, (6.31)
where w is determined from the linear stability solution about X, as illustrated below.
For the Reissner-Nordstrom system the linear stability equations are identical to (5.26):
oX =9y, 0y = —w’dx, (6.32)
however,w is given by

=[x +(1-3)A+all A . (6.33)
X

:x’é
An expression foiw is obtained using a perturbative correction fgrby writing to first

order in A™ (a brute force substitution of, from (6.5) into (6.33) is best performed
using a computer algebra system; see Appendix G for a Mathematica code to generate
(6.36) below):
XM =x+alA, (6.34)
where x;@ is given by (5.18). Substituting (6.34) into (6.33) and then solvingafor
subject to the condition that the first order correction vanishes (i.e. agrees with the
Schwarzschild result) gives the following expressiondor
a=HB1- B +31+361)0H27; B=1-60. (6.35)
The remaining calculation is straightforward algebra; substituting (6.35) into (6.34) and
then finally into (6.33) gives the result:
w=(1-30+0/A)"?, (6.36)
where

o _kGper

— = —[=[]- 6.37

2 ¢t Hig (6:37)
Therefore, in the Reissner-Nordstrom spacetime the periastron advance is reduced
compared to the Schwarzschild value (compare also with Burman [147]):

O=2mw* =2+ Np =2+ 30 - 110/ A, (6.38)
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where 3o is the Schwarzschild result given in (5.32). However, from the order of
magnitude estimates considered earlier for the Sun (equation (2.108)) the 1/ A factor is

considerably smaller than the o contribution alone.

Orbital Precession About a Bifurcation Point

As discussed earlier, a degenerate bifurcation point of the dynamics occurs a the

parameter values:

0=8/25;A=8/50 x =X, =x,=4/5, (6.39)
and is classified as a center-node fixed point (Figure 29). The dynamical interpretation
(which is not necessarily a physical interpretation) at this bifurcation point follows from
thevaluesof o and A : timelike orbits (for o > 0) about a naked singularity (for A <2).
Similarly, another bifurcation point is given by

0=0;1=16/9 00 x =x,=4/3 x,=0, (6.40)
and corresponds to photon orbits (o =0) about a naked singularity. The bifurcation
diagram for this case is given in Figure 23 along the y-axis (i.e., 0 =0) and is discussed
further in the subsection entitled Light Rays.

V2 -1

=

<
1
Qo
X

Figure 29 Phase-Diagram at the Bifurcation Point: 0 =%; A =£.
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For comparison with the precession given by (6.38), it is of interest to calculate
the precession value at the bifurcation point (6.25) which is given by the parameter
values. 0 =8/25; A =8/5. But in this case the first and second order terms vanish
identically. Therefore, the expansion must be carried out to third order giving the system:

OX =0y ; oy =-30%°. (6.41)
A first integral follows immediately from (6.41):
1(dy)? +2(0x)* = y; y = constant, (6.42)
and therefore the level curves of (5.46) about X =4/5 are given by the center-node
traectories of Figure 29. The period of a phase-plane orbit is thus calculated by
integrating along a center node trajectory (=4 x < of a period):

®=1 I:d(dx)/m , (6.43)
where a isthe turning point defined by solving oy =0 in (6.42) for dx. Equation (5.2)
iIs solved using the Beta function (for instance, Abramowitz and Stegun [140]),
B(z,w) = B(%,3), expressed as the ratio of two Euler gamma functions, (z), to give the
final result:
<D:2nw'1:ai\/§B(%,% :%\E%:%_ (6.44)
By comparison with (6.38), the periastron advance at this bifurcation point will be larger
than for the case A >2. A typical numerical example is illustrated using a =0.2 (see
Figure 29). Integrating (6.41) numerically over the phase-plane period given by (6.43),
and then plotting the orbital trgjectory in the equatorial plane (Figure 30) illustrates that
m, undergoes multiple revolutions in a radialy oscillating orbit before finally
completing a single period in phase-space to give ® = 1577.
The “acausal’ geodesics discussed by Brigman [81] are identified as the center

node trajectories abowt; in Figure 28. The distinguishing feature of such solutions is

their proximity to the event horizon and interior Cauchy horizon. As a result, these

orbits are not periodic in the usual sense, but rather, alternate between the various regions
of an extended Kruskal (or Penrose conformal) diagram to other asymptotically flat
universes (see the discussion in Chandrasekhar [68]). Nevertheless, it is of interest to
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complete this calculation for comparison to the other cases considered earlier, although it
should be clear that the term periastron has no meaning in this context.

rsng rsng

orbit contracts
until ® =1577:

orbit expands
until ® =8

0. 5 /
N Y Y S P | I 2 N I Y 1 1/ M r cosg
0.5 Sart
-1
1.5 1 period of

motion complete
-1 0 1 -1 0 1

Figure 30 Equatorial Motion at the Bifurcation Point: 0 =£; A =%, (a =0.2).

The calculation is completed by substituting X" = x; into the expression derived earlier
for &’ and then series expanding in A™ to give (for large A):

@ =[3x+(1-3x)A+0]/ A
X'=x% (6.45)

=9A/4-3-(4+0)/9A.
Therefore, the period of the orbit is given approximately by

o= (6.46)

3T

and tending to zero in the Schwarzschild limit.

Light Rays

Light ray kinematics in the Reissner-Nordstrom spacetime are similar to those
discussed earlier for the Schwarzschild case but there are important differences. As in
the Schwarzschild example, the phase-plane equations for the Reissner-Nordstrom
photons are obtained as a special case of the timelike orlats-a6:
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(6.47)

where 1/b? =20E? is a constant expressing the dimensionless impact parameter, b, as
the finite ratio of E, J, and r,. However, the simultaneous solution of x'=y' =0 for

1/b* and x results in three fixed points:

xi=3H -JAA-B)F

(6.48)
1Ubi=-&A 02?240 + 2 +16,/A(1 - %) ~9 A% (A -85
x,=0; 1/b%=0, (6.49)
X7= 3 HJAA -9 650)
5

1/b3=-&A A - 241 +2-16JA(A -%) +9,/1°(A -2) L,

compared to only two for the Schwarzschild equations which are listed below for
comparison:
Bx;=2/3;1/b?=4/27

Schwarzschild : O (6.51)
Bx,=0; 1/b3=0.
The fixed point, x,, is identical in both the Schwarzschild and Reissner-Nordstrém

spacetimes and remains a center node at infinity for all parameter values. This fixed
point gives the “precessing” hyperbolic orbits and is responsible for light bending. In
addition, it is not surprising based on the earlier analysis of timelike orbits that a third
fixed point x; appears.

For a comparison with the Schwarzschild fixed poix{sand x; are series

expanded to give for largé:

X;= 2/3+8/27A; 1/b?= 4/27+8/81A

(6.52)
X,=—2/3-8/27A+34/2; 1/b>=-4/27-8/811 - A,
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which is consistent with the Schwarzschild expressions for x; and 1/b” as the charge
goes to zero and noting also that {x},1/b’} are divergent (or equivalently, r — 0).

Furthermore, considering the fixed point x;, the result in (6.52) indicates the perturbative

influence of adding a small charge to the black hole — the effect is to decrease the radius
of the unstable “photon-sphere” while simultaneously reducing the impact parameter

By inspection of (6.50), a bifurcation occurs at the parameter valael6/9,
which gives a degenerate unstable inflection point;asnd x; merge together at:
A=16/9: Xx;=x,=4/3; 1/b?=1/b?=8/27. (6.53)
The dynamics at these parameter values are summarized by the phase-diagram and

effective potential in Figure 31.

1/b?
ir 1/b? =1/b%=8/27

degenerate
inflection point

X=r/r

center node

at infinity:
X =0

Figure 31 Phase Diagram for=0; A =16/9.

But more generally, the significance of this bifurcation point and the stability properties
of the fixed points at other parameter values are summarized in the bifurcation diagram of
Figure 32, as the black hole charge is varied. The relevance of (6.53) from the
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perspective of the bifurcation analysis is that x;= x,=4/3 isthe first rea fixed point for
A>0. For 0<A<16/9, the fixed points are complex conjugate. Asdisplayed in Figure
32, the numerical values of the real and imaginary components of the fixed points are
equal a A =8/9, which is obtained by equating derivatives of x; and x;, which
simplifiesto
94-8
6/A(A-%)

However, there are no dynamical consequences for the parameter value A =8/9 since

=00 (x, =2/3-2/3i; x, =2/3+2/3i). (6.54)

the fixed points are complex.

Rex,
center
A=8/9
saddle
Re)q saddle s ImX; /%
N SR ex
R Im x;
A=16/9

Figure 32 Reissner-Nordstrom Light Ray Bifurcation Diagram

The significance of the impact parameters is clarified by inspection of the phase-
diagram of Figure 33. In each case, the value of the impact parameter corresponding to a
given fixed point provides a maximum (or minimum) value for the capture of photons

into one of several possible orbits. For example, as illustrated in Figure 33, for

1/b%<1/b* <0, the only dynamics that are possible are given by the center node orbits
about x;. For 0<1/b*<1/b?, the dynamics are shared by the center nodes at infinity

and atx;. The impact parametef/b* =1/b?, corresponds to the separatrix and is
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analogous to the unstable “photon sphere” that was discussed earlier for the
Schwarzschild case. Fafb? >1/bZ, the dynamics are librational - completing the outer

loop orbits shown in Figure 33.

1/b?

Figure 33 Phase Diagram for=0; A =7/3.

The critical case =2, is significant dynamically in that the impact parametiiis;
and 1/b3 are equal and therefore the phase diagram and level curves are totally

symmetric about, =r_ =1 as shown in Figure 34.

As a result of the spherical symmetry shared by the Reissner-Nordstrom and
Schwarzschild solutions, the qualitative discussion given earlier for the light rays in the
Schwarzschild spacetime is similar to those for the Reissner-Nordstrom case. The main
difference in the Reissner-Nordstrom case is due to the appearance of a third fixed point

and the fact that the impact parameters for orbits akouaind x;, are dependent upon

the black hole charge. Therefore, the physical interpretation is similar to that discussed in
the Schwarzschild case (for>2). The main qualitative features and interpretation of

the impact parameters are discussed below (6.54).



1/b?

1/b’=1/4

Figure 34 Phase Diagram for 0 =0; A =2.
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Chapter 7 Discussion

The field equations originating from the Riemann tensor quadratic curvature
Lagrangian have been discussed and the analysis and classification of all known
spherically symmetric solutions to the “gauge gravity” theory has been presented. In
addition, a new exact solution has been found for the field equations originating from the
“energy-momentum” equation of the gauge gravity theory. However, the analysis
considered here does not preclude the existence of other spherically symmetric solutions
since no solutions have been found for the (-)(+) differential equations that were
discussed in Chapter 3:

%ﬁé\?‘%ﬁfﬂlﬁo' (7.2)

Furthermore, Thompson [24] has found an axially symmetric solution that has been

interpreted as a “dumbbell” consisting of two unsupported point masses. This indicates
that a classification based on spherical solutions — although useful for investigating the
gauge gravity theory — is not completely general and that other nonphysical solutions of
the field equations should be expected based on the work of Havas [36].

The field equations that are derived from the Einstein-Hilbert action by using the
standard variational procedure are equivalent to those obtained when the connection is
taken as an independent variational parameter. As discussed in Chapter 3 this
“symmetry” no longer applies when the action is taken in quadratic form and the gauge
gravity “Palatini” procedure is applied — which should be distinguished from the true
Palatini procedure where the connection and metric are completely independent. As a
result, imposing this condition onto the resulting field equations leads to an auxiliary
algebraic constraint that restricts the class of spacetime solutions satisfying the gauge
gravity field equations. The constraints are equivalently derived as a contraction of the
integrability conditions for the Ricci tensor.

The auxiliary condition gives an interesting result since it originates from the
requirement that the quadratic curvature action behave analogously to the Einstein-
Hilbert action with respect to both variational procedures. As a result, several (but not
all) of the nonphysical solutions are eliminated from the gauge gravity equations.
However, a general mathematical classification of such spaces has not been found in this
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analysis. A more restrictive condition must be met to eliminate all spaces that are not
Einstein spaces since it is obvious from the analysis in Chapter 3 that

(R, R, =R"R,;) = (R, =39, R), (7.2)
Is not valid in general. The counter-example is given by the Einstein universe metric,
although it should be noted that the Einstein universe metric is not a solution to the
Einstein free-field equations. 1n addition, the LHS of (7.2) eliminates all known solutions
that are not solutions of the Einstein free-field equations. But it would be premature to
claim any general results from this analysis without a general mathematical classification
of the spacetimes implied by R R, =R*

R, (since only the spherically symmetric

solutions were investigated as counter examples in this study). Although some progress
has been made toward the goal of a general mathematical classification (from the study of
the spherically symmetric solutions as considered in the latter part of Chapter 3) it is
difficult to deduce general results from this analysis.

In the second part of the thesis the stability properties of point particle orbital
dynamics in both the Schwarzschild and Reissner-Nordstrom black hole spacetimes have
been analyzed using the phase-plane and bifurcation techniques. In general, the phase-
plane and bifurcation techniques originate from dynamical systems theory as a means for
classifying the solution structure and fixed points of nonlinear differential equations. The
phase-plane analysis gives a method for classifying the local stability properties of fixed
points, and when the equations are integrable, is useful for constructing phase-plane level
curves that illustrate the global phase plane structure for a given system of nonlinear
equations. The bifurcation analysis is a complementary method for identifying
coalescing fixed points and the parameter values at which these “bifurcations” occur.
When used in combination, a visual and quantitative method is available to analyze the
relativistic orbital dynamics. As a result, a more intuitive approach can be taken based on
the “energy method” to classify and summarize the various dynamics that may occur —
particularly with regard to the stability properties of the orbits.

For additional applications it would be interesting to analyze solutions other than
the Schwarzschild case, e.g., the Kerr solution (a rotating black hole), or the Kerr-
Newman solution (a charged, rotating black hole). Further applications would include an
analysis of cosmological solutions (although some work has already appeared on this
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topic - see the Introduction for a discussion of the literature) and also non-conservative
orbital dynamics (i.e. systems emitting gravitational radiation) and analysis of solutions
stemming from alternative theories of general relativity, e.g., those considered in
Chapters 3 and 4. The analysis on non-conservative dynamics is of special interest given
that a considerable experimental effort has been recently organized to detect gravity
waves (e.g., LIGO), and therefore, qualitatively simpler models that illustrate the
dynamics of gravity wave production would certainly be of interest. Additional
techniques of analysis that have been developed from the study of limit cycles and
attractors in non-conservative systems would then be available and may prove useful in
the classification and visualization of these dynamical processes.

Essentially, the utility of analyzing the relativistic dynamics using bifurcation
analysis is due to the fact that the relevant physical parameters are isolated and provide a
central role in the analysis. For example, the Schwarzschild orbital dynamics are
characterized by a dimensionless parameter, o, involving the angular momentum which
Is related to the energy of the system at the unstable orbital radius through the separatrix
structure of the phase-plane. Identifying the bifurcations that occur as ¢ is varied then
provides a summary of the stability properties and dynamics over the complete range of
values taken by the energy and angular momentum. As a result, seemingly unrelated
orbital dynamics at different parameter values may be interpreted smply as different
stages of a given bifurcation. These considerations become especially important when
interpreting the dynamics associated with more complex physical situations such as the
Reissner-Nordstrom, Kerr, and Kerr-Newman solutions. The Reissner-Nordstrom and
Kerr solutions are similar in that one additional physical parameter (charge and spin
angular momentum, respectively) beyond the orbital angular momentum of the system is
required to characterize the dynamics. Therefore, a 2-d parameter space is required in
both cases to classify the dynamics. A thorough analysis of the Kerr dynamics using
traditional methods has been given earlier by Bardeen et. al. [152] and also
Chandrasekhar [68] (see also the references given in the Introduction).

Although the Kerr solution has not been considered in this study, it is worthwhile
to point out some difficulties encountered in the analysis when considering a direct
application of the phase-plane and bifurcation techniques to the Kerr dynamics in the



131

equatorial plane. To illustrate, the Lagrangian for the Kerr solution (for the simplifying
casethat 8 =m/2; G=c=1) isexpressed:
2L=1=Af2-AY¥2-3¢? + 2axtp , (7.3)
where
AN=(@1-X); A=A-x+a*x®/r7); Z=[r2Ix*+a*Q+Xx)]; x=r/r. (7.4)
The parameter a corresponds to the spin angular momentum of the system per unit black

hole mass. As in the Schwarzschild and Reissner-Nordstrom analysis the total energy

and orbital angular momentum are constants of the motion:

E=Af+ax
. _ ¢ (7.5)
J=-axt+%¢g,
and therefore t and ¢ are expressed:
f=(ZE-axJ)(AZ+a®x?)™
(B~ : 76
¢ =(@xE+AJ)NAZ+a’x*)™"
The corresponding expression for dx/d¢ isthus obtained:
(dx/dg)’ = x'A [AT2 -2 9% +2axip -1 /12, (7.7)

and then substituting (7.6) into (7.7) gives the result:

Odx O x*A(AZ +a2x?)
HigH ™ r2(@xE+cAd)

B(A-E’)t?+a’x* +AJ* +2axEJH (7.8)

To obtain the effective potential set dx/d¢ =0, solve for E, and then substitute into

E? -1 to obtain the following two cases (letting J — r,/+/20 ):

ar 4 2.2 2
— 3 [ XA@X +N\X)C+r° /D)o
BT @ )& +1g )io ] 7.9)

+a’x’(A+r2lox)IT,

Vi —1=A@+r2 /20%)-1+

where the (—) case corresponds to a particle rotating in same sense as the Kerr black hole,
and the (+) case is the effective potential for a particle that is orbiting in the opposite
direction of rotation. To check the correspondence with the Schwarzschild result

substitute forA, ¥, A and series expand to first orderito obtain:

V2, -1=(C-X)120-x + ax\(1-x)0¢ + 1) lo?, (7.10)

Schwarzschild
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which reduces to the Schwarzschild effective potential as a -~ 0. The main difficulty
when applying the phase-plane analysis to the Kerr solution is that the algebraic equation

that must be solved for the fixed points: dVeﬁ(i)/dx:O, IS non-polynomial in x.

Therefore, no closed form solution can be obtained in this case - at least for the choice of
variables and coordinate system used above.

Finally, the pedagogical value of the phase-plane and bifurcation techniques to
general relativity calculations should not be under emphasized. The literature on the
subject is vast and alternative methods of presentation that make general relativity
conceptually simpler for beginning students is an active area of investigation (e.g., [153]).
The conceptual advantage of the phase-plane approach is based on the fact that the phase-
plane method is a pictorial method closely related to the “energy-method” diagrams
taught in introductory mechanics courses. As a result, a qualitative approach is
emphasized that makes the underlying physical concepts easier to grasp for beginning
students. For example, the Schwarzschild periastron calculation is tied directly to the
existence of the center node fixed point and is a relatively straightforward calculation that
eliminates much of the unnecessary algebra that appears in other presentations. The
analysis presented in Section VI demonstrates that important topics such as dynamical
invariance is also easily handled using the phase-plane approach. Such topics provide
nontrivial and physically interesting examples which normally are difficult conceptually
for beginning students.

In summary, constructing an exact phase-plane for an arbitrary solution will only

be possible if the fixed point algebraic equatioh=y' =0, is of fourth order or less

(and in addition that a sufficient number of first integrals exists). Otherwise, finding
roots will be difficult if not impossible. However, a numerical approach could always be
taken, and would be motivated by the interesting pictures that result from combining the
fixed point structure of general relativity state-space into a diagram that includes the

event horizon.
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Appendix A: Mathematica Calculations - Chapter 2

Note: The computer algebra system calculations in this appendix (and Appendices B, E,

and G) were performed using Mathematica version 3.0 — a software package developed

by Wolfram Research [142] and running under Microsoft Windows NT version 4.0 and
Windows 98. Specialized tensor calculations were performed using the Mathematica
add-on packagklathTensor version 2.2, developed by Parker and Christensen [117].

Initialize MathTensor

<= Mathtens.m
Loading MathTensor for DO3/Windows . . .

MathTensor (TM) 2.2 (DO53/Windows(R)) (Jun 1, 1994)
by Leonard Parker and Steven M. Christensen
Copyright (c) 1991-1994 MathSolutions, Inc.

Funs with Mathematica (R) Versions Z.X.

Licensed to one machine only, copying prohibited.

Ho unit system is chosen. If you want one,
wou must edit the file called Conventions.m,
or enter a command to interactively set units.
Units: {}

3ign conwventions: Pumsign = 1 Rosign = 1
Metricgiign = -1 Detgldign = -1

TensorForm turned on,

ShowTime turned off,

MetricgFlag = True.

Dimension = 4;
SetDirectory["C:\Mathematical\Files\Dissertation\

Tensor Calculations"];

Einstein-Hilbert Standard Variation:

Perform the variation (dh correspondsto 0g, semicolons denote covariant
derivatives):

Variation[Sgrt[Dety] ScalarR, Metricy]

VS 059 - VT (04 + = VTR (D () -

g (Rpg) (BFY)



Remove derivatives from og and factor det g (i.e., partial integration):

Expand [PIntegrate[%, Metricy] f Sqrt [Detg]]
1
Z R (gF?) (hpg) - (Fpg) (BFY)

Thisisthe result:

VariationalDerivative[-% == 0, Metricyg, ua, uh]
1
'E R(gap) +Fap==10

Schwarzschild and Reissner-Nordstrom Solutions;

Load the File:

<= spherical.m
HMetricgFlag has been turned off.

Display the Metric ("4" Labels the time coordinate):

Table[Metricg[-1i, -1, {i, 4}, {1, 4}]

-E 0 1]
o - 1] 1]
i] 0 —r?sinf(theta) 0
0 1] 1] Alr)

Here are the non-zero Christoffel Symbols:

connection = [};
Do[
If[
RffineG[i, -3, -k] =!=10,
connection = {connection,
SubscriptBox[
SubscriptBox[SuperscriptBox[I'; 1], j]. k] ==
Affine[i, -3, -k] 7/ DisplayForm},

Continue[]].,

{i, 4}, {3, 4}, {k, 4}]
Flatten[connection]

E'[r] r
{I'll == . I‘lE === ,

2B[r] E[r]

r 3in[theta]® A r] 1
Tlgg =--— I'l.hl == r T212 == —

E[r] ZE[r] £

1 1
T, == =, Ty, == —Cos|[theta] Sin[theta], T%, == —,

r r

1
T%, ==Cot[theta] , T¥y == =, T%,, == Cot[theta] ,
r

A[r] A7[r]
T, == , Tty ==
A YT A
Ricci Tensor :

Table[Simplify[RicciR[-i, -311, {1, 4}, {3, 4}]
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{{A[r] (4A[r] + rA[r]) B [r] +rB[E] (A [r]*-2ZA[r] &[

ArA[r]iE[r]
A [r] ]
1 Alr] rEB [
o,0,0:, <0, — |2- 0,0,
} { z Elz]  Blz]? }
1 . :
{U, 0, —— (Sin[theta]
ZA[r] B[]t

(-rBlr] &[] +A[r] (-2B[r] +2B[c]* + B [£]))), 0
{U a, o ;[—IB[I]A’[I]2+

fTT T ara[r] Blr]t

A[r] (-ra'[r] B'[x] +2B[r] (24'[x] + £ &"[x]))) }}

Schwar zschild Solution :

Collect [Expand[Table[RicciR[-i, -3] /. {B[r] -= 1fA[r
B'[r] --D[1fRA[x], r]1}, {1, 4}, {3, 4}]1].
r, Factor]
I1- Wir] _ alxl
rifr] ZA[r]
{0, 0, -{-1+4&[r]) Sin[theta]? - r Sin[theta]® a'[r], 0}
fo, 0,0, Alel®Te] Ly ar)}l
r 2
Flatten[Expandill [DSolve[1- A[r] -xr A'[x] == 0, A[r], 1
cily
r

o, 0, n}, {0, 1-A[r] -r&‘r], 0,0

{A[r] Sl

Display the Ricci Scalar:
ScalarR
1
2riA[r]*E[r]?
4ra[r]Blr] &[r] -r*Blr] &' [r])f-4ra[r)?B [r] -
rPalr] &' [r] B [r] + 2l a[r] B[] &"[r]]
Simplify[
ScalarR /. {B[r] -> 1/a[r], B'[r] -> D[1fA[r], r1}]
—Z+ZA[r] +4ra[r] +rtAv[r]
ri

(4a[r]*Blr] -44[r] B[r]%+

Reissner-Nor dstr om Solution:

Maxwell’s Homogeneous Field Equations:

f1[ub_] = CD[MaxwellF [ua, ub], la]

F*,

Expand out the covariant dervatives
(G 15 used to denote the connection, Fh):

£2[ub_] = CDtoOD[£1[ub]]
- (6] (FFY) + (Fpg) (FF) £ FFY

Finally, this defines source-free Maxwell:

¥E[ub_] = £2[ub]
- (6] (FFY) + (Fpg) (FF) £ FFY

Define Components:

Table [MaxwellF[i, 31 =0, {i, 4}, {3, 4}1;
MaxwellF[4, 1] - H[r]: MaxwellF[1, 4] = -H[r]:
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Table[MaxwellF[i, 3], {i, 4}, {3, 4}]
140, 0, 0, -H[x]}, {0, 0,0, 0}, {0,0,0,0},

{H[r], 0,0, 0}}

Load and Display the Metric ("4" Labels the time coordinate):

<= spherical.m
HMetricgFlag has been turned off.
Table[Metricg[-i, -31, {i, 4}, {3, 4}]
{{-B[r], 0, 0, O}, {0, -, 0, O,

{0, 0, -r*Sin[theta]®, 0}, {0, 0, 0, &[r]}}

Evaluate Ordinary Derivatives:

On[EvaluateODFlag]

Lower indices on the Field Strength tensor:

Table [MaxwellF[-k, -1] = Sum[Metricg[-k, -i]
Metricyg[-1, -3] MaxwellF[i, 3], {i, 4}, {3, 4}],
{k, 4}, {1, 4}]
{{0, 0,0, &[] B[x] H[x]}, {0, 0, 0,0}, {0,0,0,0},
{-A[r]EB[r] H[r], 0, 0, 0}}

Raise an Index:

Table [MaxwellF[-k, j] =
Sun[Metricy[-k, -i] MaxwellF[i, 31, {i, 431, {k, 4},
{1.4}]

{{0,0,0, B[] H[x]}, {0,0, 0,0}, {0,0,0,0},
{A[r]H[x], 0,0, 04}

Define the Energy Momentum Tensor:

o[la ,1b ] -
Factor[ApplyRules [MaxwellT[la, 1b], MaxwmellTtoFrule’
ct (4 (Fp.) (FrF) + (Fpg) (FF9) (@)
16 (k)
Table[©[-i, —fl]2 =Hak;35um[9[—i, =311, {i, 4}, {3, 4}]
{{_ ctA[r] B[]t H[z] 0,0, D};
g k)
ctria(r] B[] Hr]®
{ - B (ky) ’ D’D}’
{D, ) ctra[r] B(r] H(r]® 3in[theta]? ) D};
& (k) T
c*k[r]zB[r]H[r]z}}
g k)

{0, a,a,

Traceless:
Sum[Metricg[i, 31 9[-1i, -31, {i, 4}, {1, 4}]

1]
These are the field equations:

fe = Simplify|
Table[RicciR[-i, -3]1 - 8mGec*O[-1, -31, {i, 4}, {3,



{{Gc*ﬁ[r] E[r]®H[r]?
+

c? (k1)
A[r] (4A[r] +£ A [r]) B [r] +rBlr] (A [r]%-2A[r] 4
drA[r]iB[r]
0,
a, U},
2. T&[r]

{D 1 2_2[;(:‘*1:2&[1:]B[]:]H[x:]2 B Al rE[r]

'z ot (kq) Blr] Blr]?

a, U}, {0, 0, (3in[theta]®
(—zGetr?A[r) Blr P HIx]Y - c® (k) £ EBlr] A7 [x] +
e (ky) A[r] (-2B[r] +2B[r] + B [x])0)
(ze* (k1) A[x] Blx]"), 0},
GetA[r]iE(r] Hlr]? A [r]t
ot (k1) Al Blz]
—r A [r] B [r] +2B[r] (24 [r] + £ &*[]) }}
4rE[r]?

Expand[r B[r] Expand[fe[[4, 4]] fA[r] + fe[[1, 1]] fB[r.
AT[E] . B[r]

Alr]  E[r]

Maxwell’s homogeneous equations:

{U, a,q, -

Simplify[Table [MakeSum[¥E£[1]], {i, 4}]]

{0, 0,0, Hx] _E Al FE ]_H,[r]}
r zA[r] ZB[r]

Factor([% f. {B[r] -» 1/A[r], B'[r] -> D[1/R[r], r1}]

{D; 0,0, - ZH[r] + £H[x] }
r
Flatten[DSolve[2 H[r] +r H [r] == 0, H[r], x]]
C[1]
{H[x] - T}
Substitute back into thefield equations:
Simplify|

fe ;. {B[x] > 1/A[r], B' [x] -> D[1/A[r], ¥], H[x] = 2
I

peffed i a[r]

—_—— s ——— + 4" [r]

{{_ l:'i(]t_]_)r'1 T , 0,0, D},
Za[r]

{ =t Gt Afr] -r&(x], 0, 0}

Fl c* (kl) r2 L L r

0, 0, Sin[th 1 =t G et i A 0
{, , Sin[theta) —m— [£] - &7 [E] |, };

1 2efGct  ZA4'[r] .

{D' 0. 0 EMI] [_ ot (kp) rt ¥ r A [r]]}}

The Reissner-Nordstrom Solution:

Flatten|

Expandfll [DSolve[1- A[r] -r A [r] == &6 Afr].r
*B [ [1- - gz’ -x]]]

Cl1] eﬁs}

{A[r]—;l+ +
r riky
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Schwar zschild Christoffel Symbols:

Simplify[Flatten[connection] /.
{B[r] = 1/0[r] . {R[r] -+ 1-r,fr}, B'[r] —»
D[1/A[xr] /. {A[r] = 1-x . fx}, r], A[r] -= {1-x.{
R'[r] -=D[A[r]f. {A[r] -=1-x./fr}, ¥r]} f.
Subscript™™[r, 51 > 0]

r

{I'lll == z—; B lez ===-L+L;,

—2r +2rr,
r-r r
Iy, == -Sin[thetal’ (r-x,), Py o= =052 Ty,
r
1 1
T, == =, T';, == -Cos[theta] $in[theta], T, == —,

r r

1
T%;, == Cot[theta], T*y == =, T*y; == Cot[theta],
r

T,y == {ﬁ}’ Tfq == {ﬁ}}

Reissner-Nordstrom Christoffel Symboals:

Simplify[Flatten[connection] /.
e’ G }
re ky ’

r. e°G
B'[r] - D[1/RIx] /. {RLr] -> 1+ + —
1

{BIr] -> 1/R[x] /. {R[x] -- 1.5,
r

}ox]s

e’G

r kK }I

)
ALr] -» {1+ T‘ +

e’G

r kK

rs
R'[r]-=D[a[r] f. {A[E] -= 1+ — +
r

1. r]d s

Subscript™™[r, 51 > 0]
2e!G+rkir, et

1 1
T == T+ — +1, +T ==
' 2r (elG+rky (LeL)) | rky o HTT

el

T, == —r Sin[theta]® 1 + =1,

ik, r

e (2efG+rkir,) (e®G+rkyi(r+r,))

e Zriki ’

g " 1 .
I"1p==—,T 31 == —, I 3y == -Cosg[theta] Jin[theta],

r r
2 1 2 1
T1s == T’ T7gs == Cot[theta], Ty == ot
ZzefGs+rkyr
ngz == Cot[theta],I‘*H == {— * 1: };
Zr (e!G+rky (r+E,])
%, - {_ Z2elG+rkrr, }}
Zr(efG+rky (E+1,))
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Appendix B: Mathematica Calculations - Chapter 3

Initialize MathTensor

<= Mathtens.m
Dimension = 4;
SetDirectory["C:\Mathematical\Files\Dissertation\

Tensor Calculations"];

Define thefirst Gauge-Gravity Field Equation:
H[1lc_, 1f_] = RiemannR[ua, ub, ud, 1c]
RiemannP[la, 1h, 1d, 1£] - % Metricyg[lc, 1£]
RiemannF[ua, ub, wy, ud] RiemannR[la, 1b, lg, 1d]
- (Rupas) (R ™) - % (Gee) (Ranag) (B3

Define the second Gauge-Gravity Field Equation:

¥i[la ,1b ,1c ]-=
2 intisymmetrize[(D[RicciR[1h, 1c], 1la], {1la, 1b}]
=(Fac:b) +Breia

Expand out the covariant dervatives
(G 15 used to denote the connection, Fh):

¥2[1la, 1bh, 1c] = CDto0D[¥1[1a, 1B, 1c]]
-(Rac,p) +Fpe,a + (Gyb::l I:Rpa) - (GPA:) (pr:l

Finally, this defines equation :

¥[la ,1b ,1c ]=¥2[1a, 1h, 1c]
-(Rac,p) +Fpe,a + (Gyb::l I:Rpa) - (GPA:) (pr:l

Define the Auxiliary Condition:

ac[lc , 1f ] = RicciR[ua, 1c] RicciR[1la, 1£] -
RicciR[la, 1b] FiemannR[1c, ua, 1£, uh]
(Rae) (Re*) - (Bap) (Re™e™)

Evaluate Ordinary Derivatives:

On[EvaluateODFlag]

Tensor Calculations - Ricci, Riemann, Weyl Tensors, Field Equations

Load the File:

<= exp sphere.m
HMetricgFlag has been turned off.

Display the Metric ("4" Labels the time coordinate):

Tahle [Metricg[-i, -31, (i, 4}, {3, 4}]
25 0 0

0 —2 0 i]
1] 0 —r?aind(thets) O
0 0 1] ot AR
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Here are the non-zero Christoffel Symbols:

connection = [};
Do[
If[
RffineG[i, -3, -k] =!=10,
connection = {connection,
SubscriptBox[
SubscriptBox[SuperscriptBox[I'; 1], j]. k] ==
Affine[i, -3, -k] 7/ DisplayForm},
Continue[]].,

{i, 4}, {3, 4}, {k, 4}]
Simplify[Flatten[connection]]
{I‘lll ==FE[r], TY; == -E2 BT ¢,

T, o= EFT ¢ sin(theta]®, Tlyy == PGB prpp
£ 1 1 .
Ty¢==—,T"4y1 == —, T"3: == —Cos[theta] Sin[theta],
r r
3 1 F 1
T1s == ;' T%;3 == Cot[theta] , T7y == ?,

T%,; == Cot[theta], TY4 == A[r], T%y == A‘[r]}

Display the Ricci Tensor :
Table [Simplify[RicciR[-1, -3]1], {i, 4}, {1, 4}]
[l-aiz1ts ZEUE | weqr)Blx] -A71x], 0, 0, o},
r
f0, E-¥BIl (L1 wEFBIT) _y af[r] + £ E7[x]), O, 0¥, {0, O,
E-*Blzl gin|theta)® (-1 +E*BT) Craf(r] + £ B [x]1, OF, {

EL 1B rr arr)t w &[] (2-CB[r]) +r&A™[r]"
r

o, o,

Display the Ricci Scalar:

Simplify[ScalarR]
1

-= (2E-EEIT (L1 W ERBOT) pfarqr)t e 2 e B[] +
r

rA[r] (-2 +rB[r]1 -t &7 (]

Non-zero Components of the Riemann Tensor :

riem = {}:
Do[
If[
RiemannR[i, -3, -k, -1] =!= 10,
riem = {riem,
SubscriptBox[SubscriptBox[
SubscriptBox[SuperscriptBox[R, i], 31, k], 1]
FiemannR[i, -3, -k, -1] f/ DisplayForm},
Continue[]],

{i, 4}, {3, 4}, {k, 4}, {1, 4}]:
Simplify[Flatten[riem]]
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{le == E*3 p B qry,
By == -E2 P p B ], RNy, == BB p gin(thera] "B
By == -E7 B p gintheta] fB (2],
Ry == EFOIFED () f L a (e ] B[] + A7 [x]), Rlay ==

E[:
SEFCUTIBIED a1t AT [r] B[] + A7[2]), Rg, == __L
B[t
Riyy) == xl s By == (1-E7 By sinthera)f, By, =
EECALE]BI=1D pory
(-1 +E7BEY ginfcheta)?, BYyy == —[];
r
E LB gy Bt
Rz.;.;g = - Rj_]_lg == - r
r r
B[t
Ry == [xl S VORI S S IS et S S - LU
EE A1 BITIY jopy EEAI]-BIT]) gopyp)
2 3
Flygg==s ————————  Rlagyy == - —————,

r r
RYy, == A[x]" - A [r] B'[r] + A"[x],
By + A [r] - A[E] B[] +4"[r] == 0, R}, ==E* Bl p g
By == -E7 B0 parr), BY, == B BI) r gin(thera)f A
Rty == E7HEITD ¢ Sin[theta]zj&’[r]}

Non-zero Components of the Weyl Tensor :

weyl = {};
Do[
If[
WeylC[i, -3, -k, -1]1 =!=10,
weyl = {weyl,
SubscriptBox[SubscriptBox[
SubscriptBox[SuperscriptBox[C, 1], j1: k], 1]
WeylC[i, -3, -k, -1] /f DisplayForm},

Continue[]].,

{i, 4}, {3, 4}, {k, 4}, {1, 4}]1:
Simplify[Flatten[weyl]]
Collect [Simplify[% /.
{A'[r] -=x1, A''[x] --x2, B'[r] --¥1, B''[r] -~ ¥2}

r, Factor]
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1
€l == -— E-tBI
! :

(-1 +EBI g p (w1 -wl) - £f (x1% 4 x2-x1wl)), Chyyy ==

1
- E-*EIT] (o1 wE¥E0T) p o(wl -9l -2 w1t 4 x2oxlvll),
1
oL, , == - — E-tEI7]
132 &
(-1 +ESBIT r w1 - w1y - rf (1% + %2 -xl ¥11) Sin[thet
1
cly,, == = E-El]
1 P

(=1 +EREIT] 4wl - w1y - vf (x1f 4+ %2 —x1¥1)) Sin[thet

tlyyy ==
414 ==
EFCALAIEID 1 b BEELE] b (] -y - rF mlfewzoxly
3t

Clyy ==

ELCRITI-BITL (o] yEREDT] g (wl - vy -t mlfexzoxlyl

3t

. SL4+EREIT] p il - w1y -t w1 w2 -xlyld
£y, == — .

. 1-E*BIT] pr fmxl+ w1y + 8 (1? 422 - xl¥ld
Cf,y == — .

(=1 +EREIT] 4 (xl - w1y - vf (x1f 4+ %2 —x1 ¥1)) Sin[thet

Czjgg = _i E-EEIT]
3
(-1 +E*B0 Ly (w1 -yl - ef rxlf+ %2 -x1vwl)) Sin[thet
Clgpy ==
dig¢ ==
EFCRIEIBIEDY (o] v EPEIE) g pxl —wly -x® (x1%ex2-xlyl
g ri
Clyy ==
EFCRIEIBITDY )y ERBT) yop pxl owl) -2 mltexz-oxly
g rt
4 ~1+EYEIT] Lp w1l -1y - 2f elf +x2 -xlyl)
L1y == P ’
4 L-E*EL) yp (cxlayl) 42 (1P 4wz -xlvyl)
C'14 == PN
6 et
1

~—E-FEITT (L1 4 EEELT] Lk opwl - w10 -t w1t w2 -xlwl)
3
1
0¥y == —
3
E-1+EPBIT) o r ]l —wl) - ef (1% a2 oxlwl)), Clypy ==

EFAEIEED (] G EFRIT  p gkl - yl) -xf xlfex2-xlyl

R-£EIr]

g ri
Ty, ==
EFCRIRIEBIDY )y EREE) yop pxl ovl) —xf mltexz-oxly
g rt
4 L1-E*BIT] pp (cxlewl) + 28 1% +x2 —xlyl)
Co114 == ’
3rt
4 S1+ERBIT) pp w1l o1y -t wlf w2 —xlyld
Ly == o .

1
£, == = E-EEIT]
6

(-1 +EPBI) gy il -wl) —ef (xlfax2-oxlwl)), Chy ==

1
~ZEREIT (1 o EPEIT Lk pxl - wl) - rforxltexzoxlyl)
&

1
C-:3 = = p-tEIr]
34 5
(-1 +ESBIT r w1 - w1y - rf (1% + %2 -xl ¥11) Sin[thet

1
%y == - = E-LELA

(=1 +ESBITT fp el w1y - rf (1%« %2 —xl w11 Sin[thet
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First gauge gravity field equation H,, =0

em = Tabl e[ MakeSum{ H -i, -j11, {i, 4}, {j, 4}

Simplify[® /. {A'[r] -> x1, &' '[r] -> x2, &' '[r] -= X3,

B'[r] --¥1, B''[r] -=¥2}]
Collect[ %, r, Factor]

E-E[r] (_1 4 EBIT1yE (] 4 EBIYE
i1 ~ +

ZE-BE] (x1-vl) (xl+¥vl)

r2
EEET 1t iwz oxlyl)t, 0, 0, n},

E-*Elr] (-1 + EF[T]yE (1 4+ EFBI]y 2
{D, - +
ri
EEI 8 it pxzowl vy, 0, 0},

E-*Elz] (-1 + EF[13 % (1 + EFlT]? gin[theta]?
{0, a, - +
rZ
E*EI ¢ 8 1t s w2 o w1l w1y Sin[thetal?, 0},

EE&[r]-#E[r] I:__]__'_:E:IB[I]:Ii il +EB[I])2
fo, 0,0, - ,
rd
2 ELAITI-AEIT] (] w1 (xl +¥l)
+

ri
okl St B I CrS e S I *}}

Second gauge gravity field equation v, =0

¥y = Table [Simplify[MakeSum[¥[-1i, -3, -k]]1], {i, 4},
{3, 4}, {k, 4}]

Simplify[%f. {A'[xr] --x1, R''[r] ->x2, A'"''[r] -= %3,
B'[r] --¥1, B''[r] -= ¥2}]

Collect[ %, r, Factor]
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E-PBI7] (-] 4+ EBL7]y (1 4 EET]y
.

[Tio,0,0,0, 0, -

EREE 1t pwlyl - 2wlt e w2y, 0, 0},
{n E-tBIs] (_1 4+ EB[3]) (14+EEl5]) Sin[theta]®
s Hr - +

r

r

EVBE b w1t vl vyl - 2 w1t 4 ¥2) Sin[theta]®, n},

z ELA[Z]-EE[] 4]
fo,00, - ———
ri

ZEIRITI-EELC] 18y w2 _x1vl) £a[r] ¢ B[r]

-E

r
(cZxlxZ-x3+2xl%yl+3uzyl-2xlyl +x1y2)}},

E-EBI=] p_1, EBl=ly 14 gl
{{e
r
EEBIl 1t i w1yl - zvltev2), O, U},
{0,0,0,0},40,0,0,0}, {0,0,0, U}};
{{n E-2BI=] (_]1 +EFI=]) (1 +EFIT]) Sin[theta]®
L L -
r

EVBE b w1t vl vyl - 2 w1t 4 ¥2) Sin[theta]®, n},

0, 0,0,0},10,0,0,0},{0,0,0, U}};
2 FLA[L] =L B[] w1

{{u, 0,0, -

ZERITI-EEIO (]t p w2 - x1¥l) £a[r]-tB[x]

+E

r
(_2:-:1:-:2_x3+2x13y1+3x2y1_2xlyl3+x1y2)},

{0, 0,0,0},{0,0, 0,0}, {0, 0,0, 03}

Different cases of the H,, =0 equations

Thisisthe (+)(+) case (Satisfies Y, = 0 equations too)

gl=1;82=1;

([[x2 +x2-x1y1) -s1 (E*FFFI 1) 72%) 1.
f{xl->=2vl, x2 >~ 82¥2, x3 > 8 2y3}]

%7, {xl-»R'[c], X2 -~ R''[r], X3--A'"'[x], ¥1 -~ B '[r
¥2--B''[r], ¥3--B'"'"[r]}
-1+ E!E[]

— +EB"[r]

Factor[%f. [B[r] -» _Tl Log[K[r]].
-1
B'[r] -- D[T Log[K[r]1l, {r, 1}],

-1
B''[x]-> D[~ Log[K[x11, {x, 23]}]
ZE[r] -2E[r]f -c*E[r]f + P K[x] E*¥[E]
h ZriE[r]t
Pavelle-Thompson works here (remember - solution goesas1/f):
E=(l+c[1]/r)°:
Simplify[2 K[r]- 2 K[r]® -r° K'[r]® +r° K[x]1 K7[x] /.
{K[r] -- £, K'[r] -= D[£, {r, 1}], K''[r] -=D[£, {r,

0

£= [L+olr®):

Simplify[2 K[r]- 2 K[x]° - v* K'[x]° +¥® K[x] K7[x] /.
{K[r] -- £, K'[r] -= D[£, {r, 1}], K''[r] -=D[£, {r,



-4cltrt
Thisisthe (+)(-) case:

sl=1:s2=-1;

([[x2 +x2-x1y1) -s1 (E*FFFI 1) 72%) 1.
f{xl->=2vl, x2 >~ 82¥2, x3 > 8 2y3}]

%f. {x1->RA'[r], x2 -~ A''[r], X3+ A" '[r], ¥1 --B'[r
¥2--B''[r], ¥3--B'''[r]}
-1+E!E[T]

— 2B (] -B"[r]
r

Factor[%f. [B[r] -» _Tl Log[K[r]].
-1
B'[r] -- D[T Log[K[r]1l, {r, 1}],

B''[r] ->1:a['?1 Log[K[r]1]l, {r, 2}]}]
-2+ 2ZK[r] + tf E*[r]
ZriE[r]
DSolve[% == 0, K[x], r]
{{K[r] 1+ C[2] Cns[% 7 Lng[rl] -

AT o[l sm[% 7 Log[x] ]}}

Thisisthe (-)(+) case:

gl=-1; 52 = +1;:
([[x2 +x2-x1y1) -s1 (E*FFFI 1) 72%) 1.
{xl->=s2vl, x2 - s2v¥2, x3 —}523{3}]
%7, {xl-»R'[c], X2 -~ R''[r], X3--A'"'[x], ¥1 -~ B '[r
¥2--B''[r], ¥3--B'''[r]}
-1 +ELE[T]
e
Factor[%f. [B[r] -» _Tl Log[K[rl].

+EB"[x]

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

—ZK[r] + 2E[E]f - e* E[r]® +rf K[r] E¥[r]
h ZriE[r]t

Thisisthe (-)(-) case (Satisfies Y, =0 equations):

sl=-1; 52 =-1;
([[x2 +x2-x1y1) -s1 (E*FFFI 1) 72%) 1.
{xl->=s2vl, x2 - s2v¥2, x3 —}523{3}]
%7, {xl-»R'[c], X2 -~ R''[r], X3--A'"'[x], ¥1 -~ B '[r
¥2--B''[r], ¥3--B'"'"[r]}
-1 +E2El=]
—
Factor[%f. [B[r] -» _Tl Log[K[rl].

+ 2B ] -B"[r]

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] -~ n[? Log[K[r1], {r, 2}]}]
2-2ZE[r] +rt E*[x]
ZriK[r]
DSolve[% == 0, K[r], r]

[Trir1 -1+ C[rl] seferzl})
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£= [L+olr®):
Simplify[2- 2 K[r]+r K"[r]/.
{K[r] -- £, K'[r] -= D[, {r, 1}], K''[r] -=D[£, {r, i

Different cases of the v,,, =0 equations

Thisisthe (+)(+) case (Satisfies #« equations too):

51=1;s82=1;
¥1-

|[x12 +x2-xiyl) /. fx2® ex2 oxiyl - W}l

(EZB(=1 _ 4

(A''[r]-B''[r])+2B'[r] (A'[r] —B'[r]]—T
2 [A"[r] -B[£]) B [r] -&"[r] +B"[£]
Factor[

Simplify[% /. {A'[r] --s2B'[r], o' '[r] ->s2B' '[r]1}]
0
¥2 - D[[x1® +x2-x1¥1] /.

s1 (E*E[F1 1)

{xf +x2-xlyl -
r2

}or] _2[13'[1:]__;

s1 (E2Flzl_ 3
[:l\:l2 +x2-x1yl) /. {xl2 +x2 -x1yl -» sETT-1)

r2
2 A'[r]
re

2 (-1+E®ElTly  Zaq[r] ZE!EIFIB/r]
- 2 BT £t -

2 (-1+EFElE]y (oL 4 Beqr])

re

Simplify[% /. {A'[r] ->s2B'[r], &' '[r] --s2B' '[r]1}]

0

Thisisthe (+)(-) case (the only solution is B=constant):

51=1;82=-1;

¥1-
2E[r] _

|[x12 +x2-xiyl) /. fx2® ex2 oxiyl - #}l

(EZB(=1 _ 4

(A''[r]-B''[r])+2B'[r] (A'[r] —B'[r]]-T

2 [A"[r] -B[£]) B [r] -&"[r] +B"[£]
Factor[

Simplify[% /. {A'[r] --s2B'[r], o' '[r] ->s2B' '[r]1}]
-2 (2F'[r]* -E"[c])
¥2 - D[[x1® +x2-x1¥1] /.

s1 (E*E[F1 1)

{xf +x2-xlyl -
r2

r] -2|B'[r]-"-
bor] -2 (5 - -
s1 (E?Flxl_q
[x12+x2—x11'1] f. {xl2 +x2 -x1yl -» sETT-1)
rZ
A'[x
2 [x]
rZ

Z (-1+EfBlsy  zar] 2 ELEIEl Bepr]
- 2 BT £t -

2 (-1+EFElE]y (oL 4 Beqr])

I

ri
Simplify[% f. {A'[r] ->s2B'[r], &' '[r] ->%2B''[r]}]
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4F[r]
£t
DSolve|

4B’ [r]
r2

B[] = C[L1]1}}

==0, B[r], r]

Thisisthe (-)(+) case (the only solution isfor (k=1) & =ronstant )):

sl=-1; 52 = +1;

¥1-
2E[r] _

|[x12 +x2-xiyl) /. fx2® ex2 oxiyl - #}l

(EZB(=1 _ 4

(A''[r]-B''[r])+2B'[r] (A'[r] —B'[r]]-T

Factor[
Simplify[% /. {R'[r] --s2B'[r], A''[r] --s2B''[x]}]
2 (-1+EF[Tly (14 EFIT

ri
2 (-1+EB[E]) (14 EB(=])

r2

-1
Factnr[ f. {B[r] e Log[K[r]

-1
B'[r] -= D[T Log[K[r]1], {r, 1}];

-1
B''[x]-> D[~ LogIKIr1l, {r, 2}]}]

% f. {K[r] -= k}
2[-1++E) [1+4E)

B krt

Simplify[Solve[% == 0, k]]

k=11

Factor[
Simplify[% /. {A'[r] ->s2B'[r], &' '[r] --s2B''[r]1}]
Z (-1+EElTly (14 EBIy

_ =

¥2 - D[[x1® +x2-x1¥1] /.

s1 (E*E[F1 1)

r2

{x12+x2—x1y1—> },r] _2[13'[1:]__;

s1 (E2Flzl_ 3
[:l\:l2 +x2-x1yl) /. {xl2 +x2 -x1yl -» sETT-1)

r2
2 A'[r]
re
Z(-1+EEEIsly  zarqr] 2ELEIT Ber]
r# h ri h ri ¥
2 (-1+EFFly (-2 4B [r])
ri
Simplify[% /. {A'[r] ->s2B'[r], &' '[r] --s2B' '[r]1}]
4B [r]
—

Thisisthe (-)(-) case (Satisfies #«~ equations too):

sl=-1; 52 =-1;

¥1-
2E[r] _

|[x12 +x2-xiyl) /. fx2® ex2 oxiyl - #}l

(EZB(=1 _ 4

(A''[r]-B''[r])+2B'[r] (A'[r] —B'[r]]-T

Factor[
Simplify[% /. {R'[r] --s2B'[r], A''[r] --s2B''[x]}]
2 (-L+E¥FITl 4 2 p2 Be[2]t - P B [L])
re
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Factor[%f. [B[r] -» _Tl Log[K[r]].
-1
B'[r] -- D[T Log[K[r]1l, {r, 1}],

-1
B''[r] _>D[?Lug[1{[r]], {r, 2311
2-ZHK[r] + P E*[x]
h rfE(r]
DSolve[% == 0, K[r], r]
Cl1] x
E 1+ —22 cle
{{ [E] =1+ " +E [ ]}}

s1 (E2El=1_1)

¥2 = p[(U) £. {U_- = }.x] -
. 1 51 (E2B(=1_ 1) 2'[r]
2[3 [r]—;] |[U);.{u-> = -2 —

Z(-1+EEIsly  zarqr] 2ELEIT Ber]
r# h ri h ri ¥
2 (-1+EFFly (-2 4B [r])
I

ri
Simplify[% f. {A'[r] ->s2B'[r], &' '[r] ->%2B''[r]}]
0
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Thisisthe casethat A” +4* - A’ B’ = 0 (with A’ = constant) - This also gives Ni’s solution:

¥2 - [[x12+x2—x1_‘¢'1] f. {xl2 +x2 -x1yl -=0}) -

(EZBI=] _ q
(A''[r]1-B''[r]) +2B'[r] (R'[x] -B'[x]) - — =
Factor[%]
—1+EfBIT] _2rf Af[r] B [E] +2 8 B e]f + i av[r] - £¥ B¥[
_ =
Collect|

1+ EEEY o g1 Bl + 2 B X R[] - BT
r, Fact.nr]
(-1 +EPly (14 EFDy
i ez A ] B ] +2B [£]f + A" [x] B[]}
¥1 = DL(U) /. {U—=0}, 1] - 2 [B'[r] - 1] ((u) £. (U -
h o
2 A'[r]
r2
2 A [r]
=
Simplify[%% /. {A'[r] ->0, &' '[r] -= 0}]
-1+ EEEI]

ST 2Bt +BYr]
ri

Factor[%]
—1+EBIT 4 2 rf B[r]? -rf B¥[r]
_ -
Collect[-1+E°°F1, 2r* B'[r])” - +° B7[r], r, Factor]
(-1 + BBl 1 G BBy L 2B )R- BV ]
-1
Factor[% /. [B[r] -- — Log[K[r]],
2

-1
B'[r] -- D[T Log[K[r1], {r, 1}],

-1
B''[r]-- D[ LoglKIrll, {x, 2}]}]
2-ZHK[r] + P E*[x]
h Zri¥[r]
DSolve[% == 0, K[r], r]
Cl1] x
K 1+ —22 cle
{{ [E] =1+ " + 1 C ]}}
(EQB[r]_]_]z

r2

Simplify[B' [r]° + 2
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Z (-1 +EEEIE
L
Factor[%f. [B[r] -» _Tl Log[K[r]].

+B[r)t

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

E-16E[r] +83K[r]! + rfE[r]¢
driE[r]E
second gauge gravity field equation with A=0:
Table [Simplify[MakeSum[¥Y[-1, -3, -k]11]1, {i, 4},
3. 4}, {k, 4}]
Factor[
%f. {A[x] -0, A'[x] -0, A'"'[r]-=0, R'""'[r] -=0}]
[li0,0,0,03, {5,
-iE[r] ,_ +E[r] ior P fpe
E (-1+E + 2P B[] rB[r])rD;D}’{D

r
E-El=] gin[thera]® (-1+E*B07] y 2 ¥ Brpr)® - e B¥[x]"

r
u},
{0, 0,0, 01},
{{n, E-2BIz] ;1 v EFBUT] L2 i Beqr) - B[]
r

.0, 0},

{0, 0,0,0}, {0, 0, 0,0}, {8, 0,0, 03}, {{o, 0,
E-*Blel gin[theta]? (-1 +E*B0T w2 k¥ B[]t - ¥ B[]

r
n},

0, 0,0,0},10,0,0,0},{0,0,0, U}};

{{g,0,0,0}, {0, 0, 0,0}, {0,0,0,0},{0,0,0, U}}}
Factor|

1B e Bl - BOe] 4. {Bx] - '_21 Log[K[x
-1
B'[r] -= D[? Log[K[r]1], {r, 1}];

B''[r] - D['T1 Log[K[r]1l, {r, 2}]}]
-2+ 2KE[r] - r*E"[r]
2HK[r]
Thiscaseis Ni's Solution:

DSolve[% == 0, K[r], r]
[Trir1 -1+ % seferzl})

A Pavelle - Thompson Extraneous Solution - Thisis a special case of Ni's solution with =
=0:
f-(1-clfr);
-2+ 2K[r] - K7 [r]
2 K[r]
{K[x] -= £, K'[x] -= D[£, {r, 1}], K''[x] -=D[£f, {r, i

Simplify[-
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Auxiliary Condition

Tabl e[ Fact or [ MakeSunfac[-i, -j]11]1, {i, 4}, {j., 4}]
Simplify[% /. {A'[r] ->x1, &' '[r]->x2, &' '[r] -> X3,
B'[r] --¥1, B''[r] -= ¥2}]
{{rig (2E-2EIT] (o] 4 EEEIy g1

eyl (xl+wl) +rf xl+2yl) (x1f+ =2 -x1v11)3,
U,U,U},

{D, i (E-%E[r]
r

(rfwl® e vl (1-E*FR) Crlyzaryly e xlfqr-z2efyly g
®l -1 +EFBITl Lz pwl o rf w2+ wlfia,

a, U},

{0, o, 1 (E-*B0] rrfe1? o5l (1 -EBIT] rfwzaryly 4
r

®1Prr-zrfyly) + %l (-1 +EFELR) L2 eyl o rf (x4 ylt
sin[thetal ¥, n},

1
{DJ DJ DJ F
(zEEAIIEEIN o pf )t ri a2yl vl fr-rivl) 4

%l (=1 +EEBIT) Ly 4 pf (2:-:2-1_;13))))}}

00 Case:

tt = Collect|[(2 ¥ x1® o rf x2 ¥1+ x1® ix -t ¥1) +
x1 [—1+E23[t] +ryler’ [2 x2 —yf]]], r, Factnr] f
fxl->A'[r], x2 = &' '[r], x3 -= &' ' '[r], ¥l ->B'[r],
¥y2--B''[r], ¥3--B'''[r]}
(-1 +EBEy (1 BRIy A pe] 4 £ AT[E] (AT [X] + B [£]) +
! (ZAr] + B [r]) (A [r]f - AT[r] B[r] + A"[x])

11 Case:

rr=Collect[[-1+E° "5 1)yl —ryl (x1+¥1) +
r® (x1+2y1) (x1° + x2 -x1¥1), r, Factor] /.
{x1->R'[r], x2->A''[r], x3-> &' ' '[r], ¥1 ->B'[r],
¥2->B''[r], ¥3--B'''[r]}
(-1 +EBEYy (1 BRIl B pe] - £ B[x] (A°[r] +E[x]) -
r! (A [r] + 2B [r]) (AT [x]Y+ A[r] B[] - A"[x])

22 Case:
o =
lZZullen:t[r2 x7 iyl [1—E23[‘] —rix2 +E¥1] +x1? (r- 2t
x1 [—1+E2]3[r:I +2ryl+x? [xz +y12]], r, Factnr] f.

fx1-=R'[r], x2 -~ R''[r], x3 -= &' '[r], ¥l -= B'[r],
¥2-=-B''[r], ¥3--B''"[r]}

(-1 +EFFly (14 BRIy (A [x] -B[x]) + ¢ tA'[r] +E[E])F +

rf (A (] -B[r]) (&[] - A [x] B'[r] + 4" [z])

Linear Combinations;

Simplify[Expand[tt /&' [r] -rr fB'[r]]]

e—— frA[r] +B[r]) (ra(r]’-2ra[r]tB(r] -
A[r] Br[r]

rE[r] A" [r] + &' [r] (-Z2E [r] +r B [r]f+rA"[E]1))
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Collect[[rA'[r]’ - 2r A" [r)° B[r] -
rBIr]1A"[r]+A"[r] [—2 B'[r] +r B [r]? +r11”[r]]],
r, Fact.nr]
—ZA'[E]E[r] +r (A'[r] -B'[r]) (& [r]® - & [r] B'[r] +&"[r

Thisisthe (-) case for 00:

51=1;82=-1;
(-1+E"F]) (1 +EP ) x1 4
rxL(xL+y1) +x° (2x1+¥1) (227« x2 - x1¥1) /.
{x1--=2¥1, x2 --=2¥2, X3 ->-52¥3)}
%f. {x1->A'[r], x2 > A" '[r], x3-+A'"'[r], ¥1 -+ B'[r
y2--B''"[r], ¥3--B'''[r]}
Factor[%f. [B[r] -» _Tl Log[K[rl].

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

K'[r] (-2 +2K[£] - £ K*[£])
h AK[r]t
E'[r] (-2 + 2K[r] - 12K~ [r])
1K[r]®

[Trir1 -1+ % seferzl})

Thisisthe (-) case for 11:
gl=1;82=-1;
{-1+E* Py -
Tyl (xloyl) +x” (x1+2¥1) (x2° + x2 - x1¥1) /.

DSolve[ == 10, K[r], r]

{x1--=2¥1, x2 --=2¥2, X3 ->-52¥3)}

% fxl-=R'[r], x2--R"'"[r], x3--R""'[r], ¥1--B'[r
¥2--B''[£], ¥3->-B'''[£]}

Factor[%f. [B[r] -» _Tl Log[K[r]],

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] -~ D[? Log[E[r]], {r, 2}]}]
E[r] (-2 +2K[r] -t Er[z])
4K[r]®

Thisisthe (-) case for 22:
s1=1;82=-1;
(-1+E°F]) 1+ E°F) (1 -y +
r(x1+¥1) % (x1-y1) [x2® +x2-x1y1] f.

{x1--=52¥1, x2 --52¥2, x3--52¥3}

%f. [¥x1--R'[r], x2 --RA'"'[r], ¥x3--R'""'"[r], ¥1 -=-B'[r
¥2--B''[£], ¥3->-B'''[£]}

Factor[% /. {B[r] -- 'Tl Log[K[r]],

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

K'[r] (-2 +2K[£] - £ K*[£])
h ZE[r]t
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Thisisthe (+) casefor 00:

sl=1; 52 =1;
(-1+E"F]) (1 +EP ) x1 4
rxL(xL+y1) +x° (2x1+¥1) (227« x2 - x1¥1) /.
{x1--=2¥1, x2 --=2¥2, X3 ->-52¥3)}
%f. {x1->A'[r], x2 > A" '[r], x3-+A'"'[r], ¥1 -+ B'[r
y2--B''"[r], ¥3--B'''[r]}
Factor[%f. [B[r] -» _Tl Log[K[rl].

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

(K [r] (-2E[r] + 2K[r]*+ 2 K[r] E'[£] -

4K [r]?
SePE [p)f+ 3t B[] KU [z

Thisisthe (+) casefor 11:

sl=1; 52 =1;
{-1+E* Py -
Tyl (xloyl) +x” (x1+2¥1) (x2° + x2 - x1¥1) /.
{x1--=2¥1, x2 --=2¥2, X3 ->-52¥3)}
%f. {x1->A'[r], x2 > A" '[r], x3-+A'"'[r], ¥1 -+ B'[r
y2--B''"[r], ¥3--B'''[r]}
Factor[% /. [B[r] -~ 'Tl Log[K[r]],

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

YT (K [r] (-2E[r] + 2K[r] -2 K[r] E'[£] -

SePE [p)f+ 3t B[] KU [z

Thisisthe (+) casefor 22:

sl=1:s2=1;
(-1+E°F]) 1+ E°F) (1 -y +
r(x1+¥1) % (x1-y1) [x2® +x2-x1y1] f.
{x1--=52¥1, x2 --52¥2, x3--52¥3}
%f. {x1->A'[r], x2 > A" '[r], x3-+A'"'[r], ¥1 -+ B'[r
y2--B''"[r], ¥3--B'''[r]}
Factor[%f. [B[r] -» _Tl Log[K[rl].

-1
B'[r] -- D[T Log[K[r1], {r, 1}],

B''[r]-> D[_?l Log[K[r1], {r, 2}]}]
rE[r]?
Klr]®
r K’ [r]?
K[r]?
{{E[r] = C[1]}}
{-2K[r]+2K[r])* -
2rRIx]K[x] -3 K [x] + 3" K[x]1 K7 [x]]) £.
{K[r] ->cl, K'[r] -> D[cl, {r, 1}1,
K''[r] - D[cl, {r, 2}]1}
-zcl+zelt
Solve[% == 0, c1]

DSolve[ == 0, K[r], r]



153

{{cl—= 0}, fcl—=1}}

Thisisthe A - 0 case for 00:

sl=1; 52 =0;

(-1+E"F]) (1 +EP ) x1 4
rxL(xL+y1) +x° (2x1+¥1) (227« x2 - x1¥1) /.
{x1--=2¥1, x2 --=2¥2, X3 ->-52¥3)}

u}
Thisisthe A - 0 casefor 11;
51=1;52=0;

{-1+E* Py -
Tyl (xloyl) +x” (x1+2¥1) (x2° + x2 - x1¥1) /.
{x1--=2¥1, x2 --=2¥2, X3 ->-52¥3)}
%f. {x1->A'[r], x2 > A" '[r], x3-+A'"'[r], ¥1 -+ B'[r
y2--B''"[r], ¥3--B'''[r]}
Factor[% /. [B[r] -~ 'Tl Log[K[r]],

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[x]-> D[~ Log[K[x11, {x, 23]}]
E'[r] (-2 +ZE[r] -z E[z]]
4K[r]?

Thisisthe A - 0 casefor 22:
51=1;s82=0;
(-1+E°F]) 1+ E°F) (1 -y +
r(x1+¥1) % (x1-y1) [x2® +x2-x1y1] f.

{x1--=52¥1, x2 --52¥2, x3--52¥3}

% . {x1-=R'[r], k2> A" '[r], X3 R&'"'"'[r], ¥1 - B'[r
¥2--B''[£], ¥3->-B'''[£]}

Factor[%f. [B[r] -» _Tl Log[K[r]].

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

B''[r] -- 1)['?1 Log[K[r11, {r, 2}]}]
K'[r] (-2+2K[r] -z K[z]]
4K[r]?
Factor[% /. [B[r] -~ 'Tl Log[K[r]],

-1
B'[] - P[ — Log[K[x11, {x, 1],
-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

Each term has this differential equation as a factor - which has the Einstein Universe as

a solution:

DSDlm[K’[r] (-2+2KIx] T KD o oo ]
4 K[r]?
[{E[t] =+ C[1]}, {E[r] = 1+x C[1]1}




Thisisthe B - 0 case for 00:

sl=1; 52 =0;

(-1+E"F]) (1 +EP ) x1 4
rxL(xL+y1) +x° (2x1+¥1) (227« x2 - x1¥1) /.

{¥l-- =2, y2 -=- 52}

%f. {x1->A'[r], x2 > A" '[r], x3-+A'"'[r], ¥1 -+ B'[r
y2--B''"[r], ¥3--B'''[r]}

Factor[%f. {R[r] -= _Tl Log[K[rl].

-1
A'[r] -= D[T Log[K[r]1l, {r, 1}],

-1
R''[x] -> D[~ Log[K[x11, {x, 2}]}]

(E'[e] (-2K[e]f+ 2ERBE B{r)f - c K] B [x] +

TISE
FriE(r)fi-z2ei B[] KT (]

Thisisthe B - 0 casefor 11:

sl=1; 52 =0;

{-1+E* Py -
Tyl (xloyl) +x” (x1+2¥1) (x2° + x2 - x1¥1) /.

{¥l-- =2, y2 -=- 52}

%f. {x1->A'[r], x2 > A" '[r], x3-+A'"'[r], ¥1 -+ B'[r
y2--B''"[r], ¥3--B'''[r]}

Factor[%11/. {A[z] -~ 'Tl Log[K[r]],

-1
A'[r] -= D[T Log[K[r]1l, {r, 1}],

-1
R''[x] -> D[ Log[K[x1l, {x, 23]}]
r*Kr] (-3E[r]+2K[r] E*[c])
BE[r]?

Thisisthe B - 0 casefor 22:
51=1;s82=0;
(-1+E°F]) 1+ E°F) (1 -y +
r(x1+¥1) % (x1-y1) [x2® +x2-x1y1] f.

{¥l--s2, ¥y2 -- 52}

% . {x1-=R'[r], k2> A" '[r], X3 R&'"'"'[r], ¥1 - B'[r
¥2--B''[r], ¥3--B'''[r]}

Factor[% /. {R[z] -~ _Tl Log[K[r]],

-1
A'[r] -= D[T Log[K[r]1l, {r, 1}],

-1
R''[x] -> D[~ Log[K[x11, {x, 2}]}]

(E'[r] (-4K[r]f+ 4B B K{r)f -2 r K] E'[x] +

TISE
FriE(r)fi-z2ei B[] K (]
Solution for the 22 case:

2 g a1l -
DSDlve[r K[r] (-3K[r]* +2K[r] K~[r]) __ 0, Kix1, r]
S K[r]®

4
{{K[r]—» CIL]E (rE-2rC[2] +C[2]%) }}

But does not satisfy the other two equations:

4
£ - :
C[112 (r? - 21 C[2] +C[2]1%)
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(-4Krr)® +aE* I R)® -
2rRIx]K[x] + 3 K [x]) - 2" K[x]1 K [x]] £.
{K[r]-- £, K'[r] -- D[£, r], K''[r] -=D[£L, {r, 2}]}

Simplify[%]
64 (EXEIT] p 4 C[2] -EEIR CL2])

C[1]1% (r-C[2])F

Additional Vanishing Ricci Scalar Analysis:

Vanishing Ricci Scalar Differential equations (A = B case (+)(+)):
((-1+E*"F) _ap (x1-y1)-r® (x1° + x2 -x1¥1)) /.
{x1->R'[r], x2 -+ &' '[r], x3 -+ &' '[r], ¥1 - B'[r],
¥2-=B''[r], ¥3-- B ' '[x]})
a[r] - BLrl:
Factor[
% /. {&'[r] -> D[&[r], {r, 1}], A' '[r] ->D[A[r], {r, 2)
Factor[% /. [B[r] -~ 'Tl Log[K[r]],

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

B''[r] -» D[_?l Log[K[r]]l, {r, 2}]}]
—ZK[r] + 2E[E]® + P E[r]® -rf K[r] E¥[r]
h ZE[r]t
Pavelle-Thompson works here (Schwar zschild does not):

E=(1l+kf1x)*;

Simplify[-2 K[r] + 2K[x]* + r* K'[r]* - r° K[x]1 K'[x] /.
{K[r] -- £, K'[r] -= D[£, {r, 1}], K''[r] -=D[£, {r,

0

Vanishing Ricci Scalar Differential equations (A=const. case):

((-1+E*"F) _ap (x1-y1)-r® (x1° + x2 -x1¥1)) /.
{x1->R'[r], x2 > %' '[x], x3 > &' '[x], ¥1 = B'[x],
¥2-=B''[r], ¥3-- B ' '[x]})

g = c[1]:

Factor[%% /. {&'[r] -> D[y, {r, 1}], &' '[r] -> D[y, {r, :

Factor[%f. [B[r] -» _Tl Log[K[rl].

-1
B'[r] -- D[T Log[K[r1], {r, 1}],

-1
B''[x]-> D[~ Log[K[x11, {x, 23]}]
_-l+K[r] +rK[x]
Klz]

Thompson Solution works:
-1+K[r] +r K'[r]

== “J K r
— [rl, r]]

Simplify[DSolve|-

{rin - 25

{-1+EEEl])

Vanishing Ricci Scalar Differential equations(A'= B "~ zr case):

((-1+E*"F) _ap (x1-y1)-r® (x1° + x2 -x1¥1)) /.
{x1->R'[r], x2 > &' '[r], X3 &' ' '[r], ¥y1 - B'[r],
¥2--B''[r], ¥3-=B' "' [r]}]
(-1+E?5[=])

g=B[r]+ ——M
2r
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Factor[%% f. {A'[r] -y, R''[r] -> D[y, {r, 1}]1}]
Collect[%270, r, Factor]
Factor[%f. [B[r] -» _Tl Log[K[r]].

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[x]-> D[~ Log[K[x11, {x, 23]}]
Simplify[1-4K[r] +3K[r]’ - 3rK'[r] +r K[r]1 K'[r] +
2r* K [r]" - 2" K[r] K" [r]]
1+3K[r] - 3cE ] +2 B ) +
Klr] (-4+rK[r] -2 B[]}
Vanishing Ricci Scalar Differential equations (A = - B case):
((-1+E*"F) _ap (x1-y1)-r® (x1° + x2 -x1¥1)) /.
fx1-»A'[r], x2 = &' '[r], x3 = &' ' '[x], ¥1 -+ B'[x].
yz-}B"[r],ys-}B"'[r]}]
g =-B[r]:
Factor[% f. {A'[r] -> D[y, {r, 1}]1, ' '[r] -~ D[y, {r, 2!
Collect[%, r]
Factor[%f. [B[r] -» _Tl Log[K[r]],

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

B''[r] -» D[_?l Log[K[r]1]1, {r, 2}]}]
—Z2+ZE[r] +4r K] + P Ev[r]
ZE[r]

DSnlve[—z + 2K[r] +4r K'[x] +r° K [r] == 0, K[x], r]
f=1+kfr;
Simplify[-2 + 2 K[r] +4r K'[r] + * K" [x] /.

{E[x] = £, K'[r] -- D[£, {r, 1}], K''[*] -=D[£, {r, i
1]
f=1+kfr":
Simplify[-2 + 2 K[r] +4r K'[r] + * K" [x] /.

{E[x] = £, K'[r] -- D[£, {r, 1}], K''[*] -=D[£, {r, i
1]

Additional Vanishing Weyl Tensor Calculations:

{-1+E:EI]y
Vanishing Weyl Tensor Differential equations(A’= B’ r case):
(([-1+E " e (x1-y1) - r° [x2° + x2 -x1¥1))] /.
{x1->2'[r], x2 = R''"[r], X3 -=A'"'[¥], ¥l -= B[],

yz-}B"[r],ys-}B"'[r]}]
i (-1 +E2E[])
g B - -

Factor[%% f. {A'[r] -y, R''[r] -> D[y, {r, 1}]1}]
Collect[%, r, Factor]

-ERPEL 1Bl (s Ty 4 o1 3EPPET) £ B [x) - 27 B
Factor[s/. (Blr] -» — LogIKIr]l,

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] -= D[? Log[K[r1], {x. 2}]}]
—Z+Z2E[r] -3rE[r]+rE[r] E[r] -r* E[r]? +ri K[r] E¥[
ZE[r]?
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= (1+Kk31):
Simplify[-2 + 2 K[x] -
FrE[r] +r K[r]1K[r] -’ K[r]? + ¥ K[r]1 K [x] /.
{E[r] -+ £, K'[r] -+ D[£, {r, 1}], K' '[x] -= D[£, {r, :
0

Vanishing Weyl Tensor Differential equations (A=const. case):

N (-1+E2E[=])
g = B[r] - f:

Factor[% /. {A'[r] -- g, &' '[r] -= D[y, {r, 1}]1}]
Factor[%f. [B[r] -» _Tl Log[K[r]],

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

B''[r] ->1)['?1 Log[K[r1], {r, 2}]}]
Z-ZE[r] + tE[r]
B ZrE(r]
DSolve[-2 + 2KE[r] -r K [x] == 0, K[x], r]
{E[r] =1+ C[1]}}

Vanishing Weyl Tensor Differential equations (A = - B case):
((-1+E*")ep (x1-y1) - r® (x1® + x2 -x1¥1)) /.
{x1->2'[r], x2 = R''"[r], X3 -=A'"'[¥], ¥l -= B[],
¥2->B''[r], ¥3-- B'''[r]}]

g =-B[r]:
Factor[%% . {A'[r] -= D[y, {r, 1}], &' '[r] -= D[y, {r, :

Factor[%f. [B[r] -» _Tl Log[K[r]].
-1
B'[r] -- D[T Log[K[r]1l, {r, 1}],

-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

—Z2+ZE[r] -2rK([r] + P Ev[r]
h ZE[r]
f-1+kir +kdr’;
Simplify[-2 + 2 K[r] -2r K'[r] +¥" K"[x] /.
{E[r] -+ £, K'[r] -+ D[£, {r, 1}], K' '[x] -= D[£, {r, :
0

Vanishing Weyl Tensor Differential equations (A = B case) (thisisalso the (+)(+) case -
satisfies Y=~ = 0 equations, and Vanishing Ricci Scalar and Weyl Tensor t00)):

((-1+E*")ep (x1-y1) - r® (x1® + x2 -x1¥1)) /.
{x1->R'[r], x2 > %' '[x], x3 > &' '[x], ¥1 = B'[x],
¥2-=B''[r], ¥3-- B ' '[x]})

g = B[r]:

Factor[%% /. {&'[r] -> D[y, {r, 1}], &' '[r] -> D[y, {r, :

Factor[%f. [B[r] -» _Tl Log[K[rl].

-1
B'[r] -~ D[T Log[K[r]1l, {r, 1}],

-1
B''[r] - D[ — LoglKIx11, {x, 2}]}]

—ZK[r] + 2E[E]® + P E[r]® -rf K[r] E¥[r]
ZE[r]?




158

Pavelle-Thompson works here (reminder - solution goesas1/f):

£-(1+kl/r)*;
Simplify[-2 K[r] + 2K[x]* + r* K'[r]* - r° K[x]1 K'[x] /.
{K[r] -- £, K'[r] -= D[£, {r, 1}], K''[r] -=D[£, {r,

Gauss-Bonnet Variation Results

A separate MathTensor Session:

<= Mathtens.m
Dimension = 4;
SetDirectory["C:\Mathematical\Files\Dissertation\

Tensor Calculations"];

Euler-Gauss-Bonnet Linear combination

1
gh - - — Epsilon[ua, ub, uc, ud] Epsilon[li, 13, 1k, 11]
4

RiemannR[ui, uj, la, 1b] RiemannR[uk, ul, 1c, 1d]
1 ..

-= (Epsilom; i) (Epsilen®™ % (Rp'l) (Rodh
4

Expandfll[% f. EpsilonProductTensorRule]

BY - (Re) (Ra') - (Ry™) (R - (ReY) Rty - Ry (Raty 4
Ry R’

Tsimplify[%]

B -4 (R:) (') + (Ras™h) (Rad*

Thisis & ;

Perform the variation:
Variatinn[Sqrt [Detg] ScalarR®, l-Iet.ricg]
2V g R (hpe FY -2 g R (T + % g BE (0P () -

2+ g R (Rpy) (h89)
Remove derivatives from g and factor det g:

Expand [PIntegrate[%, Metricy] f Sqrt [Detg]]
1
-2 (BT (hpeF) + 2 (R (hF.q) + Z B! (oPY) (hyg) -

2R (Fpq) (P
Remove derivatives from og :
PIntegrate[%, Metricy]
2 (BFT) (b + %Rz (gF7) (hpg) -2 (B, g7 (hF) - ZR (Rpg 1
Factor out 09 :
VariationalDerivative[%, Metricy, ua, ub]

1
2 (R.ap) + Py B (gap) - 2 (R.q%) (ga) - 2R (Ra)

This i the result for 5.
45, = Canonicalize[%]

1
2 (R.ap) + Py B (gap) - 2 (RgP) (ga) - 2R (Rap)
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Thisis ¥
RicciR[la, 1b] RicciR[ua, uh]
(Ba) ()

Perform the variation:

Variation[Sgri[Detg] %, Metricg]
1 — —
'E g (BP0 (qu:l +M g (hpq;rq:l I:Rpr) -

%ﬁ (B %) (R - % VG (pq™) B +

VT (g e (FF) - % VT B ) BT +

%ﬁ (0% (Res) (B™*) (hpg) - g (Bpg) (RI7) (WP -
W a (Rpg) (RFT) (hi)

Remove derivatives from g and factor det g:

Expand [PIntegrate[%, Metricy] / Sqrt [Detg]]

% (RF17) (Bpque) - (P70 (Bpg.e) +§ R0 () +
= Rae ™) (BP. = (e, (g5 + = (Rpg,™) (9%,1) »

1
Y (0P (Ra) (R™) (hpg) - (Rpgq) (R7) (hF0) - (Rpg) (RFT)

Remove derivatives from 0g:
PIntegrate[%, Metricy]
1 1
'E (FF3.70) I:h'pq) + (BF7.35) I:h'pq) + E (g% (Be.) (B™) (hpc
1 1
E (Rqr;rq) (hpp:l - E (Rqr;rq) (hpp:l + (Rpr;qr) (hpq:l -

1
(Rgq) (R¥) (hP:) - 3 (Bpq:"z) (BP9} - (RBpg) (FP) (hi)

Factor out 09 :

VariationalDerivative[%, Metricg, ua, uh]
1 1
Rra;br_Ra.b;rr"‘Rar;br_ E (Rqr;rqj (Jap) - E (Rqr;rq) (ap) -

1
(Rpa) (FeF) - (Rga) (Bp?) + Z (gap) (Rz.) (B7)

This is the result for &5 5.

Tsimplify[Canonicalize[%]]
2 I:Rpa ;bP) -Bap ;pP' I:qu ;qP) (fap) - 2 I:Rpa) (RbPJ +

1
7 (9ap) (Fpq) (FF¥)

Expressin a different form by removing derivatives from the Ricci tensor:
§5; = AipplyRulesRepeated[%, RiemannRules]
Roo-Ran? - 2 (Bog?) (G) + = (50) (Rpg) (RF9) -
2 (Rpq) (R
Thisis 5 :
RiemannR[ua, ub, wy, ud] RiemannR[1la, 1b, 1y, 1d]
(Rapag) (R™)
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Perform the variation:
Variation[Sgri[Detg] %, Metricg]
—2g (BT (Rpogs) -24 0 (hpgeoe) (FFF¥) 4 % g (P
(Rrewu) (R (hpg) - % Ny (Fpgrs) (Re™5) (BF™) +
g (Bpge) (FF™™) (h%]) + % Ny (Fpgrs) (ReFT5) (0% -
g (Rpgrs) (Re’F1) (071 + 40 (Rpgrs) (Re™h (07%)
Remove derivatives from g and factor det g:

Expand [PIntegrate[%, Metricy] f Sqrt [Detg]]
2 I:RPIQS sl (hpq )+ 2 (Rprqs;;:l I:th;IJ +

1 1
= () (Brewa) (R (hpg) -~ (Ryqzs) (™) (%) 4
1
(Fpqrs) (FF¥70 thi) + = B (ReF) (0% -
(Fpgrs) (Re’F7) (h™) + (Rpge) (BT (075
Remove derivatives from 0g :

PIntegrate[%, Metricy]
1
-2 (Rprqs”rj (hpq:l +E (gpq:l (Rr;bu:l I:R”tuj I:h'pq) -

1
2 (Rprg: "7 (BFY) - Ey (Rpgrs ] (Re37°) (BF¥) +

1
(Rpqrs) (REF¥) (hi) + Z (Rpgrs) (ReF75) (%) -
(Rpqrs) (ReF) (h™) + (Rpgr.) (RFY) (h¥F)
Factor out 09 :

VariationalDerivative[%, Metricg, ua, uh]
1
-2 (Rrub;srj -2 (Rarbs;sr) = E I:Rpars:l I:Rbprs:l +

(Rqarsj (Fe™) + I:qura:l (BT + I:qu.ca:l (Fp'F7 +

(9] (Breeal (RT)

S v

Thisls the result for 954,
Tsimplify[Canonicalize[%]]
1
-4 (Rpaqb;qu +2 I:qura:l (BT + E (San) I:qur.c:l (REF5)

Expressin a different form by removing derivatives from the Riemann tensor:

45; = ipplyRulesRepeated[%, RiemannRules]
2 (Foap) -4 (Rapf) + 4 (Rpp) (RF) -4 (Bpg) (BT +

2 (qura) (Rbrpq) +% (dan) (qurs) (qurs)
Lanczos Linear Combinations:

(’Sl -4 ﬁ52 + 653
1
4 (F.ap) -4 (Bap 71+ Y B (ga) - 2 (RgP) (ga) -

ZR (Fa) +4 (Bpp) (B.F) -4 (Rpq) (RFp) -4 I:R;aib - BRap o F -
1 1
Z (RF) (gap) + 3 (gar) (Rpgq) (BP9 -2 (Rpqd (Raqbp))

1
2 (qura) (Rbrpq) + E (San) I:qur.c:l I:qursj

Expand[%]



1
Z B (g,p) - ZR (R) + 4 (F) (BF) - 2 (Gap) (Rpq) (RFY) -
4 (Rpq) (RPp?) +8 (Bpgl (FahP) + 2 (Bpgza) (R +

1

Y (Uar) (Rpqee) (BPI7)

This gives the Gauss-Bonnet Variation result:
Tsimplify[Canfill [Expand[-%58 / 2111

1
"2 B (ga) +B (Ra) - 2 (Rp,) (ReP) + () (Rpg) (P9 -

2 (oq) (R = (pae) (R - T (0 (Bprs) (FF)
% f. RiemannToWeylRule
S () +R (R -2 () (RF) + (5) (Rpg) (RF9) -
2 (pq) (- B (- (07 (@9 + (3a) () + = (D) R
(57) (Ba%) - (0,7 (ReF) + (@) (BFD)) 4L, -
(2R - (G0 (@) + (G (@) + = ((Faa) By -
(fgr) (Bpa) - () (Rye) + (Gpe) Rga)) +Cpgrs)
(-2 R @ @ s @) @) (@ B
(%) (Ba) - (%) (BF7) + (@F) (BRF)) 4Ly -
T (aa) [~ 2 R ) () + (Bp0) (30)) + = ((90) By
(Ggr) (Bpa) - (5.) (Rge) + (Gpe) Rge)) +Cpges)
(- R ) @ (@) @) s
~ (%) @) - (g%) () - (&F9) (R¥) + (5F%) (R

Cpqﬂ]

On[MetricgFlag]
Canfll [%%]

1 2
ry R (g (CpgP) + 3 R (Cpar®) - (Rpa) (CqtPh) - (Bppd (CF.°
1 1

Y () (Rpq) (CFT) 3 (ar) (Rpq) (Co¥7) - (Rpg) (CaFp

1
(qu:l (Caqbpj = (Cpqraj (Cbrqu = E (San) (Cpqrsj (Cpqrsj
Tsimplify[*]

1 2
ry R (ga) (Cpgt?) + 3 B (Cpap®) - (Rpa) (Cge® - (Bgd (.1

1
(San) I:qu) (Crpqr) = (Cpqraj (Cbrqu = E (San) (Cpqrsj (Cpqr

Define a Rule Making the Weyl Tensor Trace-Free on any Index Pair:

RuleUnique [WeylTraceRule, WeylC[la ,1bh ,1c ,1d ],
0, PairQ[la, 1k] || PairQ[la, 1c] || Pair0[1la, 1d] ||
PairQ[lh, 1c] || PairQ[1h, 1d] || PairQ[1c, 1d4]]

Apply therule:

IpplyRules[%%, WeylTraceRule]
1
'(Cpqra) (Cbrqu = E (San) (Cpqrsj (Cpqrsj
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Auxiliary Condition for Miscellaneous M etrics

Initialize a Separate MathTensor Session:

<= Mathtens.m
Dimension = 4;
SetDirectory["F:\Mathematica\Files\Dissertation

Tensor Calculations"];

Define the Auxiliary Condition:

X[1c_, 1f ] = RicciR[ua, 1c] RicciR[la, 1f] -
RicciR[la, 1b] FiemannR[1c, ua, 1£, uh]
(Rae) (Re*) - (Bap) (Re™e™)

Evaluate Ordinary Derivatives:

On[EvaluateODFlag]

For the Pavelle-Thompson Metric:

<= Pavelle Thompson.m
HMetricgFlag has been turned off.
Table[Metricg[-i, -31, {i, 4}, {3, 4}]

1
_— 0 1] 0
1,42
[5+1)
] —? o u
1] 0 —r? sin®(theta) 0
0 0 0 !
1, .42
(541
Table[MakeSwm[X[-1i, -3]11, {1, 4}, {3, 4}]
Simplify[%]
4cli(3cl+5 4clf jel+x)?
{{_ cli(3cl+ 5 ;U,D,D},{D; w;g,gl
¥ (ol +1) rf I
{D, 0, 4clt fcl+r1fsin(theta]? . D},
s
4clt 1+3
{D, 0, o, _w}}
rf (cl + 1)
Simplify[ScalarR]
o
For the Thompson Metric:
<= Thompson.m
HMetricgFlag has been turned off.
Table[Metricg[-1, -31, {1, 4}, {1, 4}]
1
- ﬂ+1 g f
¥
] 2 0 ]
0 0 —?sin?(theta) 0
1} a a 1
Table[MakeSwm[X[-1i, -3]11, {1, 4}, {3, 4}]
el el
Hooe— 0, 0,0}, {0, , 0, 0},
2% (cl+ 1) qrt

3clfgin[theta]?
{0, g, - TR
drt
Simplify[ScalarR]
o

, 0}, {0, 0,0, 0}}
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For Kottler’'s Metric:

<= Kottler.m
Table[Metricg[-i, -31, {i, 4}, {3, 4}]

1
-_— 1] 1]
c2r2+1+%

] — a a

0 0 —r? givd(thets) 1]

0 0 0 c2rt +1 +%
Table[MakeSwm[X[-1i, -3]11, {1, 4}, {3, 4}]
Simplify[%]

{{0,0,0,0},{0,0,0,0}, {0,0,0,0},{0,0,0,0}}
Simplify[ScalarR]

lZca

For the Einstein Universe Metric:

<= Einstein.m
HMetricgFlag has been turned off.
Table[Metricg[-i, -31, {i, 4}, {3, 4}]

I 0 0
1] 0 —r?gird(theta) O
1} a a 1

Table[MakeSum[X[-1, -31], {1, 4}, {3, 4}]
40, 0, 0,0}, 40,0, 0,0}, {0,0,0,0},{0,0,0,0}}

Simplify[ScalarR]
gcl
Table[FicciP[-i, -3], {1, 4}, {3, 4}]
__2el 1] ]
clrdel
] —Z2cly? ] 1]
1] o —2¢cl#2 sin(thets) O
1} a 1} 1}

1
Tahle[RicciR[—i, -3] - — ScalarR Metricyg[-i, -]
1

{i, 4}, {3, 4}]

cl
T 0 0 ]
0 —2% el #) i 0
1] 1] —% o1+ sinditheta) 1]
0 0 0 - (el
Table [WeylC[-1i, -J, -k, -11, {i, 4}, {3, 4}, {k, 4}, {1,
For Ni's Metric:
=< Hi.m
Table [Metricg[-1, -3]. {1, 4}, {]. 4}]
1 9 0 1]
c2r2+1+%
] —3 ] 1]
0 0 —?sin?(theta) 0
0 0 0 1

Table[MakeSum[X[-1, -31], {1, 4}, {3, 4}]
Simplify[%]
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{{ el (cl-2c2r?)

-, f0,0,0
2r5|:cl+r+c2r3j' e }f

el (cl-2c2r®)
{U, —a ,U,U},

{D, 0, 3cl(cl-2c2r?) 8in[theta)]? . D}, (0,0, 0, D}}
drt

Simplify[ScalarR]

gcz

For the Vanishing Ricci Scalar Metric:
<= VanishingRicci.m
HMetricgFlag has been turned off.
Table[Metricg[-i, -31, {i, 4}, {3, 4}]

1
- %H 0 0 0
0 —p2 0 0
0 0 —r? sin?(theta) i]
<l
I 0 0 a2 +1

Table[RicciR[-i, -3], {1, 4}, {1, 4}]
1 1
M= 0,00l o, 22, 0,0},
rf (el +rf) rt

{D’ 0, cl §in[theta]® D}, {D’ 0, 0, cl? +clrf }}

B i 3
r r
Simplify[Table [MakeSum[X[-i, -3]1]1, {1, 4}, {3, 4}]1]
4clt 0oo.o o 4clt -
{{rs (Cl_'_rz) . , , }l’{ L rs , , }l’

4clt $in[theta]?

{DJ’ DJ’ - —5 .
r

Simplify[ScalarR]

gcz

4cl? (cl+ et

D}’ {D’D’ o, - T)

Tensor Calculationsfor the Auxiliary Condition:

Define the Auxiliary Condition:

ac[lc , 1f ] = RicciR[ua, 1c] RicciR[1la, 1£] -
RicciR[la, 1b] FiemannR[1c, ua, 1£, uh]

(Rag) (Be*) - (Rap) (Rc*5)
% f. FiemannToWeylRule

1
(Rag) (Bc®) - (Rax) ('ER (- (") (™) + (gee) (0*7)) +

1
5 () Res) - (0% Re?) - (07 Re) + (0es) (B
C:iib]
% f. RicciToTraceFreeRicciBule
1 1
(=R (ga) +TFR.) [ R (o) + TFRA -
4 4
1 1 b a ab
(5 R (o) +TFRa) [~ — B (- (2h) (969 + (ger) (900 +
1 1 1
= (@™ (SR (gen) + TFR ) - (9:%) [ R (9™) + TFR
2 4 4
1 1
(@®) [ R (96 + TFR*) + (ges) [~ R (g% + TFR®
4 4
C:iib]

Canfil1 [Expand[#]]
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1 1
-— R (gcs) (TFR.*) + — R (TFR:¢) -
1z G

% (TFR,) (TFRes) + (TFR,q) (TFR,%) +§ (TFE.®) (TFRer) +

%R (TFRec) +% (TFR.c) (TFR;*) - % R (ges) (TFEZ,) -
% (gee) (TFRa) (TFR) +% R (Care®) - (TFRu) (Cc%)
Tsimpli £y [%]
—%R (ges) (TFRP) +%R (TFR 1) % (TFRGF) (TFR, () +
2 (TFRpe) (TFRF) —% (ges) (TFRpq) (TFREY) + %R (Cpee®) -
(TFRpy) (C.Ps%)
Define a Rule Making the Weyl Tensor Trace-Free on any Index Pair:

RuleUnique [WeylTraceRule, WeylC[la ,1bh ,1c ,1d ],
0, PairQ[la, 1k] || PairQ[la, 1c] || Pair0[1la, 1d] ||
PairQ[lh, 1c] || PairQ[1h, 1d] || PairQ[1c, 1d4]]

Apply therule:
IpplyRules[%%, WeylTraceRule]
5 1 1
vy R (gce) (TFRGF) + 3 R (TFRc:) - 3 (TFRF) (TFR;) +

1
2 (TFRgy) (TFRF) - 3 (Uced (TFRpq) (TFRFY) - (TFRpq) (C.%

Define a Ruleto Make the Trace Free Ricci Part Vanish on Contraction:

RuleUnique [FicciTraceRule, TraceFreeRicciR[la , 1b ],
0, PairQ[la, 1b]]

Apply therule:

IpplyRules[%%, RicciTraceRule]
1 1
Py R (TFR;;) +2 (TFRps) (TFR.T) - 3 () (TFRpg) (TFREFT) -

[TFRpq) (CcF:7)
Thisisthe result:

Tsimplify[%]
1 1
Py R (TFRcs) +2 (TFRp¢) (TFR.F) - 3 (gcs) (TFRpq) (TEFREFY) -

(TFRpq) (CF:7)
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Appendix C: Gauge Kinematicsin Classcal Mechanics

In the first section of Chapter 4, the prototype SU(2) gauge theory formalism

developed by Yang and Mills has been considered. The general pattern in this approach
may be identified:

starting from a global symmetry - local dynamical invariance is established by
introducing a “connection” - expressed as a linear combination of the algebra

basis for the symmetry group

Therefore, as an exercise following this pattern - consider the equations resulting from
this general prescription outlined above - applied to the invariance of Lagrange’s
equations under loCatotations.

To this end, let us consider the free motion of a point mass in rectilinear

coordinates so that
L=3md, x'x’; i,j=123. (C.1)
Obviously, (C.1) is (globally) invariant under a constant rotation:
X' - x" =d(x") = d(R} x') = Ry X ©2)
0 L=1L',

since R} isorthogonal where

R, =[e"*], 0 SO(3R), (C.3)
using the adjoint representation (O i, j and k have the same index range) with 8* =
group parametersand A, generating the so(3) Lie algebra:

[A;. 4] zsiqk/\i. (C4)

f “local” in this sense means that the group parameters are time dependent.
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However, under local rotations (i.e. 8 = 8(t)), L is no longer invariant as may be
checked substituting (C.2) into (C.1) for the case that R] = RY,(t). Therefore, let us
construct agauge covariant derivative from so(3,R):

Ox'=dx' + T x, (C.5)
to obtain local invariance under (C.3). Following the prescription outlined above, the

s are
Mo SMMgAdy =M 5 Ay =TSy, (C.6)
and with this identification, (C.5) becomes
O, x'=dx' + (Y Ox)'. (C.7)
But this already looks familiar recalling the usual replacement in a (non-inertial) rotating

reference frame:
x'=x"+ (0 Ox))', (C.8)

and then comparing with (C.7) we identify

rkD Ewk:dtek ] ri[]tEEkaja)k =|-w® 0 w' |. (C.9)
w® -w* 0

Carrying through with the analogy, we derive the transformation law df tbte
Moe = RYMTE R = (d RY)RY,

requiring as before that

Ox' - Ox" = RiOx. (C.10)

Given the transformation in (C.10)J, x" and L' are now invariant under time-

dependentSO(3,R) transformations wheh is expressed in terms af, :

L =3md, (0,x)(Ox"),
as are the dynamical equations:

0,0, L) -9, L=0. (C.11)

Substituting fortd, in the above gives the form bf

L = 4m{(d®)® + 2dXx Qw OX) + (@0%)?], (C.12)
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and then (C.11) becomes

mO%) = - m(d*)' + 2@0dx) + (d@ 0% + (@Do0x)], (C13)
showing that local gauge invariance of Lagrange’s equations \B@I& R) leads to the
usual dynamics in a (non-inertial) rotating frame of reference. However, this is as far as
we go with the analogy, since by constructing

Ghw =0T G =~ TG + Th T = T T (C.14)

we see immediately that the gauge field is identically zero. As a result, one could not
expect to obtain (C.11) from an action constructed like (3.13). Therefore, (C.12) and
(C.13) are essentially gauge kinematic equations base®di,R), not the gauge
dynamical equations usually considered in standard gauge theory.

One final comment: the connection in (C.9) is given in the adjoint representation.
But we might also consider the spinor representation and therefore obtain a “spinor
formulation” of mechanics as discussed by Hestenes [154]. However, as seen above, this
spinor form would be merely an arbitrary representation of a gauge-type (kinematic)
theory based or80(3,R) (giving (C.12) and (C.13) in the adjoint rep). Therefore, it
would seem unnecessary to view these equations as deriving solely from a Clifford

algebra reformulation of classical mechanics - as motivated by Hestenes.
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Appendix D: Orthogonal Groups

A central theme of the analysis considered in the early sections of Chapter 3 is
invariance under a given transformation group. The general gauge theory formalism
reviewed in Chapter 2 provides a systematic method for deriving dynamical equations by
postulating invariance under a given symmetry group. This technique is applied in
Appendix C to afamiliar example from classical mechanics. The purpose of the present
Appendix is to provide a brief introduction to the orthogonal group using low
dimensional examples and to define the notation used in earlier Chapters.

Axioms
A group is the pair: (G,2), where G is a set and « is the binary operation of group
multiplication satisfying (using the usual quantifiers: [ =for all, for every; U=there

exists; and the abbreviations: st. = such that; ! = unique).

D g,°9,0G 0g;,9, G (closure)

@  (9°9,)°0,=9 °(9,°9),00,.9,,9,0G (associatively)

3 Ol element 10G st. g, »1=1-g, =g;,, g, 0G (existence of theidentity)
(4 Og,0G Oleélement g;*, st.g'cg,=0,°97"'=1, 0g,0G (existence of

the inverse)

An algebraisthetriple: (A,V,°), where A isaset, V isalinear vector space, and - isa

map, o: VxV - V, defined between elements of A and satisfying:

(1) a ca; A Oa,a; A (closure)

(2 ac(a +a)=a-°a +a-°a ,0aq,3,3 0A (bilinearity)

(@ +a)ecq =a;ca +ta.°a , Ua,a;,a, 0A
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Other varieties of algebra’s may be obtained depending on which additional postulates
are satisfied, for example:

3 (@ca)ea,=a-¢(a;°qa), Oa,a;,a, JA (associativity)

(4) ! element 100!, st. a, c1=a,, Oa, A (existence of the identity)
(5) aca; =a-°a;, Ja,a;0A (commutative)

(6) aca; =-a-°a, da,a; A (anti-commutative)

(7) (@ca)ea,=a<(a;cq) +a;c(a -a,) (aderivation)

Along with (3), (4), (5), (6), (7); the properties ofdefine the algebra and in the case of a

Lie algebra (for instance, Gilmore [155]) the product is given by the Lie bracket:

[a,a;] = —[a;,a]. With this anti-commutative product, property (7) may be written:
[[a.a].a] +[[a;,al]. a] +[[a . a],a]=0. (D.1)

which is more commonly referred to as the Jacobi identity. There are other properties of
Lie algebra’s that classify them as topological spaces, but these topics are beyond the
scope of this Appendix. We will, however, make use of the exponential mapping to
construct elements of the Lie group, which is dependent upon the property (simply
assumed here) that each element of the group may be continuously connected to the
identity element in group space.

Orthogonal Groups
Consider the group of transformations preserving the line element Bf gne.
an E, with a symmetric fundamental tensgr ordinary if g is positive definite,
indefinite otherwise) defined in this case using a rectilinear coordinate sygjem,
ds’ = g, dx'dx’ ; i, j,k.. 0" j K..etc. =1 ..,n. (D.2)
The kernel symbolg, denotes a general metric quantity but in the rectilinear system, a
representation ofj is g;, identical to the Kronecker delta=( emphasizes that the

equation is only valid in the specified coordinate system):
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gij = Jij : (D-3)
Using kernel-index notation the transformation is expressed:

ds’ - ds? =ds’ = g, dx"dx’, (D.4)

and equality with (D.2) means that ds® is a scalar quantity. Substituting the
contravariant transformation rule:

ax"

—_— dXi
ox

dx' =

R dx , (D.5)

into (D.2) and then combining with (D.4) gives a condition on the invariance of g; :
RiR gy = g, (D-6)
or equivalently a condition onthe R" :
R OO(n). (D.7)
l.e. R is an element of the orthogonal group O(n), a subgroup of the general linear
group, Gl(n) (the group of all nxn nonsingular transformations). But note that no
number field (F) has been specified to this point for the entriesof R, e.g. thereal (R),
or complex (C) number fields might be used to define entries of R'.. But rather than

specifying a pre-determined number field for the undetermined group elements, for
generality let us solve (D.6) for several low dimensional cases and then let the possible
ranges of these entries determine F.

Returning to (D.6), multiplication by g gives
R.R* = 0F, (D.8)
and the quantity
R“ = g,R|g", (D.9)
Is defined as the adjoint of Rij' through the raising and lowering of appropriate indices as

shown above. But note that for proper matrix multiplication the ordering of indices
should be switched on R* to RY., so that in real applications (D.8) and (D.9) should

read:
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R'R% = JF, (D.10)
k "~ Ki

R\ = g,R"g", (D.11)

respectively. In rectilinear coordinates the adjoint is identical to the transpose, however,

in cases involving an indefinite metric, the transpose and adjoint are not necessarily

identical (e.g. see O(1,1) below).

O(2)
Consider a special of case of the equations when the dimension of Rij Is2x2

and defined with entries of an arbitrary field F:

. [A bC
' eodr
Equation (D.10) is then:
2 2
(A bda cO Oa*+b* ac+bdd [ OC (D.13)

£ dftb dH fe+bd ctvarg O 2P
giving a system of 3 equations in 4 unknowns, and therefore the solution will have only 1
independent parameter. The general solution satisfying (D.13) gives 4 possible elements

for the R ; (expressed arbitrarily in terms of the parameter c):
-c U E—\/l—c2 -c U
Vvi-¢? ﬁ H ¢ -J1-¢?

ﬁ C +\/170EE c —J1-¢°

The first two correspond to transformations with detRij =+1, ie. “special’

(D.14)

transformations 0B80(2) , while the second two correspond to reflections about émel
y axes, respectively; witldet Rij = -1. In addition note from (D.14) that every solution
to (D.13) satisfieslet Rij = %1, independent of which is a general property that can be

derived directly from (D.8)).
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0(2,R)

To construct the Lie subgroup SO(2,R) of O(2,R), consider an exponential

expansion (since by definition of the Lie group these elements are continuously
connected to the identity), parametrized in terms of ¢ (c is assumed real) and the

undetermined generator L', :
R =¢, (D.15)
Series expanding both sides in the parameter ¢ about ¢ = 0 to first order gives

R

J

tOR|

C= d +cly, (D.16)

c=0

and then substituting explicitly into (D.13) for the first solution of (D.14) results in the

system:
-10 of hQo
=0 .[F (D.17)
Eﬁ 0o gl kg

assuming arbitrary elements, { f,h, j,k}, for the Lij . Therefore to first order in c the

solution is;

| 1
= E;LL . E (D.18)

and then substituting into (D.15) (series expanding and changing ¢ — &) givesthe result:

A-£+8 +.. -0+2-2+ 0 [posd -snfL

R = : D.19
: Eﬁ—%ﬁ@-f—... 1-2+8 + ., D Hsing  cosé (D-19)
or by comparison with (D.17), ¢ - sing.
For the third element of (D.14), (D.16) becomes:
1 0 1 0 f h
D- D [0 D D D EP (D.20)
+1H E;Ll off Eb 1D i kb

showing that no Lie algebra exists in this case because the solution is “discontinuously”
connected to the identity by inspection. Similar results are obtained for the fourth
element. As discussed below the second group element differs from the first by a rotation
of /r. As a result, the entire Lie algebra is given by (D.18), corresponding to the Lie
subgroup (D.19) foO(2,R) .
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Substituting the solution ¢ = sin@ into (D.14) gives an alternative expression for
the group elements:

R [Trosf —smﬁD D—cos@ -siné [ [rcosfd snf[[rosd snéd M

D.21
%n@ cos@ sm@ —cosé’% Esiné’ cosﬁg%smﬁ —cosﬁ%( )

The first group element is (D.19) (a counter-clockwise rotation - denoted by R

(clockwise will be R )); the second is a clockwise rotation followed by a rotation 77
(R, xR , and is therefore a member of the Lie group); the third is a counter-clockwise
rotation followed by a reflection about the y-axis, then a rotation of 77 (R, xR, xR );
the fourth is a clockwise rotation followed by a reflection about the y-axis (R;, xR, ).

Therefore, any element of (D.21) may be obtained from a minimal set consisting of an
arbitrary rotation and a single reflection (in the above example the third element results

from: R, xR;, =R, ). Hence, one choice would be

R [Trosf —snﬁD[IL O[ID
%n@ cosHD —1

The base structure of O(2) (defined over the real number field) is then apparent from
(D.21):

={R,, R,}. (D.22)

O(2,R) = SO(2,R) O R,(2)xS0(2,R)
={I DR (2} xS0O(2,R).. (D-23)

The first two elements of (D.21) are [0 SO(2,R) while the second two are obtained as
the product of a single reflection and a rotation, i.e. these elements are
OR;(2) x0(2,R), where R,(2) denotes a reflection in 2 dimensions; the Lie sub-

algebra, so(2,R), isgiven by (D.18).

0(2,C)

Consider now O(2,C), i.e. (D.14) with cOC. Inthis case, € will have both
real and imaginary components. Substituting 8 — 8 +i¢ into (D.19) gives for the Lie
group SO(2,C):
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[Cos(@+ig) -—sin(@+ig)0 [rosfcoshg —isindsinhg —sinfdcoshg —icosfsinhg [
Hin@+ig) cos@+ig) H Hin@coshg +icosfsinhg cosfcoshg —isin@sinhg E(D_24)
_[rosf -sin@(lcoshg -—isnhg[]
“Hing. coso Hisinhg  coshg B
having used the identities:

cos(ig) = coshg

sin(ig) = isinhg
cos(8+i@) = cosfcoshg —isnfdsinhg
sin(@+i@) = sin@coshg +icosfdsnhg .

Therefore the Lie subgroup of O(2,C) is a 2-parameter group that may be factored as the

(D.25)

product of 2 single parameter groups SO(2,R) and SO(2,1), noting that the secondary
element of (D.24):

mcoshg  —isnhgr

Hsnhg coshg [ (D-26)

isan element of SO(2,i). Similarly, this second element of (D.21) factors as:

[Fcos(@+ig) -—-sin(@+ig)d [Fcos@ -—-sin@[Ticoshg isnhglC
O . : 0= O . . iy (D.27)
sn@+ig) -—-cos(@+i¢g)] [sSn@ -—cos@Trisnhg coshg

and for the third and fourth elements, respectively:

[(Fcos(@+ig) sin(@+ig)Od [Fcosf@ sin@[Ticoshg -isnhg[
O , 0= 0. _ 0 (D.28)
sn@+ig) cos(@+ig)] [sné cos@%smw coshg [

[ros(@+i¢) sSn(@+i¢g) O [rosé sSn@ [T1coshg isnhgC
Tin@+ig) -cos@+ig)H~ Fsind -coso-isinng cosg P 22
Factoring the elements of O(2,IR) in this manner, it is apparent that the group relation
(D.23) generalizesin thiscaseto

0(2,C) = O(2,R)x0(2,i) O R,(2)x0(2,R)x0(2,i), (D.30)
or smply

0(2,C) = O(2,R)x 0(2,i). (D.31)
O(11)
For the group O(1,1) consider

. [A bC
R. =0 0 (D.32)
c dt
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but in this case the metric is defined

L oC
;= O D.33
9; B -aF (D.33)

and the adjoint is not simply the transpose as it was for O(2), but rather:

a-ga —oC

“Hp oF (D.34)

Rki' = gi’j’Rjj’g

The system (D.13) isthen

(@ bMa -cO_Oa’-b® bd-acO_ [l OC (D.35)
£ dffb dH fe-bd d?-crg B 2P |
asystem of 3 equations in 4 unknowns, and therefore the solution will again have only 1

independent parameter. The general solution satisfying (D.35) gives 4 possible elements
for the R ; (expressed arbitrarily in terms of the parameter c):

gf 1iF o T
Jl—cﬁE Nt
D

= -7 %
Hc +HEHC o)

The first two correspond to transformations with detR‘j =+1, ie. “special’

(D.36)

transformations 080(1,1), while the second two corresponddet R ;=-1.

O(LLR)

To construct the Lie subgroupO(L,1LR) of O(1,1R), consider an exponential
expansion parametrized in termscand the undetermined generatéjr:
R =¢e"". (D.37)
Series expanding both sides in the paraneédroutc = 0 to first order gives

R

J

+ I Ry|_

C= d +cly, (D.38)

c=0
and then substituting explicitly into (D.38) for the first solution of (D.36) results in the
system:
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0 10 of hQ
%]_ [t = . c, (D.39)
00 O kO

assuming undetermined elements, { f,h, j,k}, for the L‘j . The solution isthus:

| 1
L = élo OE (D.40)

Substituting into (D.37) (series expanding and changing ¢ — @) givesthe result:

E11+92+9“+... O+Z+% + .0 [roshd smh@[

R = D.41
' [ﬁ+93+95+... 1+2+8 + ...D Egnhé’ cosh@E (D41
For the second element of (D.36), (D.38) becomes:
10 1 0 f h
D- D 0 D D D EP (D.42)
-1H Eﬁ OD Eb 1D i kb

again showing that no Lie algebra exists here because the solution is “discontinuously”
connected to the identity. Similar results are obtained for the third and fourth elements of
(D.36), therefore the entire Lie algebra is given by (D.40), corresponding to the Lie
subgroup (D.41) foO(1L1LR).
Substituting the solutiort =snh@ into (D.36) gives an alternative expression

for the group elements:

(drosh@ snhf [ [Fcoshd sinhfé O
~Hkinhe cosheH Hsmhe  -coshof

[Fcosh@ -sSnh@] [rosh@ -—-snh@ [

Hsnhe  coshe H Hsinhe  —coshoFs

(D.43)

For purposes of illustration, the significance of each element in (D.43) may be
understood within the context of a 2-d Minkowski spacetime (Schouten [83], p. 43).
Equation (D.44) provides the (indefinite) metric for this space with coordinates

(x°, x") = (ct, x), and scalar product:
x X =g, xXx = (x°)% = (x})?. (D.44)
The first element is a “boost” or transformation to an inertial frame moving with velocity

v in the x direction (A_,) (the boost parameted is related tov through:

coshg =y =1/{1- B; sinhg = yB; B =¥); the second is a boost in the direction
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followed by both space (P) and time (T ) inversions (P xT x A, ); the third isaboost in

: while the fourth is a boost in the

-X !

the -x direction followed by a spatial reflection P x A
+x direction followed by atimeinversion T XA, .

The 4 elements of (D.43) are discontinuous in the sense that any 2 group elements
may not be connected by continuously varying the group parameter 8 - but rather must
be obtained from the following separate discrete transformations: PxT x, Px, T x,
times an arbitrary boost. Hence, the base structure of O(L1R) is apparent from the

combinations that must be used to obtain (D.43):
O(LLR) = SO(LLR) O PxTxSO(LL,R)
0 PxSO(L1,R) O TxSO(L,1,R) (D.45)
={IDPOTOPxT}xSO(L1,R).
An example of a minimal set would therefore be given by:

(Qroshd snhd0 1 OO 1 OOl O

'~ Hhinhe cosheH Ho -1HHo +1HHo -1 (D.46)

= {A,, PxT,T,P},

assuming @ arbitrary.

0(11,C)

Consider O(1,1,C), i.e. (D.36) with ¢ C. Substituting € — 8 +i¢ into (D.43)
gives the corresponding Lie group element:

Coosh(0+i¢) Sinn(6+1¢) 0)_ [Dosh® sinh@ (Toosg isingL 1\
Hinh(@+ig) cosh(@+ig)H Hsnhe cosh@HHsing cosg '

having used the identities:
cosh(i¢) = cosg
sinh(ig) = ising
cosh(@+i¢) = cosh@cosg +isnhfdsing
sinh(8+i¢) = sinh@cosg +icoshdsing .

(D.48)
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Therefore the Lie subgroup of O(1,1,C) is a 2-parameter group that may be factored as
the product of 2 single parameter groups SO(1,1,R) and SO(1,1,i), noting that the
secondary element of (D.47):

(Jcos¢ isng[

Esin¢ cos¢ E (D.49)

gives an element of SO(L,1,1). Similarly, the second element of (D.43) factors as:

[Fcosh(@+i¢) sSnh(@+i¢) O [Fcoshd Snh@ [Ticosg isSngC
0 . . 0= 0. _ 3(D.50)
snh(@+i¢g) -—cosh(@+ig) [JsSinhé —coshé’%sm¢ CoS@ [

and for the third and fourth elements, respectively:

[(Fcosh(@+i¢) —-snh(8+i@)0 [Fcoshd -—-sinh@[Ticosy isSng[l
O : 07 0o . i} (D.51)
snh(@+i¢g) cosh(6@+i¢g) 7 [Jsinh@ coshé %sm¢ cos@ [~

[rosh(@+i¢) -sinh(@+ig)d [roshf -sinh@[Ticosg isng[
. : 0= O _ 0 (D.52)
Hsinh(@+i¢) -cosh(@+ig)H Hsnhe -coshdHHsing cosg [
Hence, it is apparent that the group relation (D.45) generalizes in this case to

0(1,1,C) = O(LLR)xSO(LLi). (D.53)
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Appendix E: Mathematica Calculations - Chapter 4

Conformal Transfor mations

Initialize MathTensor

<= Mathtens.m

Conformal Transformation of the Metric:

Rulelnigue [l-[etricCunfunnalRulel, Metricg[a . b ],
At Metricg[a, b], LowerIndex([a] £& LoverIndex() [h]]
IpplyRules[Metricg[la, 1b]; MetricConformalRulel]

A% (gap)
Rulelnigue [l-[etricCunfunnalRule2 ; Metricg[a b ],

at Metricg[a, b], UpperIndex([a] £& UpperIndex() [h]]
IpplyRules[Metricg[ua, ub]; MetricConformalRule2]
gab

ak

Conformal Transformation of Connection:

Dff[MetricgFlag]
rhs - AffineG[ua, 1b, 1c] + A~
{Metricg[ua, 1b]OD[A, 1c] + Metricg[ua, 1c]OD[A, L
Metricg[lh, 1c] Metricg[ua, ud] OD[A, 1d])
. (ge?) (Ap) + (0p*) () - (ged (g% (1,8)
A

G"b 3

RulelUnigue [
AffineConformalRule, AffineG[ua , 1b , 1c ], rhs,
UpperIndex0[ua] &4 LowerIndex(Q[1bh] £ LowerIndexQ[1c]

IpplyRules[AffineG[ua, 1b, 1c], AffineConformalBule]
_ fgee) (P20 (Ag) . [ge*] (4,1) . [0p™) (A,c)

Gib:
A A A
Make Rules to Express in Normal Coordinates:
AffineZeroPule :=

{0D[AffineG[a , b ,c_],d ] --0D[AffineG[a, b, c], d
nffinet[a ,b_,c ]--0}
ApplyRules[0D [AffineG[ua, 1b, 1c], 1d], RAffineZeroRule
G'%c, 4
MetricDerivZeroRule : = {0D[Metricg[a , b ], c ] -=- 0}
HormCoordinateBule : = T -
Flatten[{AffineFeroRule, MetricDerivZeroRule}]

Apply this to the Riemann Tensor:

IpplyRules[AffineG[ua, 1b, 1c], AffineConformalRule]
(gre) (GF2) (A, 5] (ge®) (4,8) (ae*) (A,e)

A ¥ A ¥ A
IpplyRules[RiemannP[ua, 1b,; 1c, 1d], RiemannToRffineR
(GFpa) (G°%c) - (GFhe) (G'pa) - G'nc,a+ Glra,c
Expand [ApplyRules [%, AffineConformalRule]]
IpplyRules[%, HormCoordinateRule]

a
Fpe -
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_ Cgpa) (o) (gF%) (A0 (3,40 . (9ec) (ga*) (9F9) (dp) (4,

At aE
(Upa) (e) (GF9) (072 (A, g) (4,0
at *
(Uped (Twa) (GF9) (072 (A, g) (4,0 (dma) (gF) (A, (A,
At * At
2 (4% (A,p) (A,) (Upe) (P4 (A p) (A, a)
i ) i *

2 (g (Ap) (A 3) N N (Uha) (P2 (A pe)
—————— -G d+ F gy - —m———— +
At A

(gnc) (OF2) (A pa) . (ga*) (Ape] (0] (4pa)
A A A
On[MetricgFlag]
Dum[¥%]
20(ge®) (Ap) () 2 (o) (Ap) (A.a)
_ = . = _
(Oma) (de®) (A,p) (AF) (el (Fa®) (A.p) (AF)
At * At *
2 (gpa) () (A% 2 (dOpc) (A q) (4,7 g 2
- - 6%, a+GMpac +
At At
(9a*) (ke (0] (Apg)  (pa) (4.7 . (Uhe) (4,47
A A A A

%-%[[1]] - %[[§]] + RiemannR[ua, 1b, 1c, 1d]
_ 2 0ggt) (Ap) [A,.) . 2 09:*) (Ap) (da)
At At
(Oma) (Fe®) (A.p) (AF) (Omed (Ta®) (A,p) (AF)
At * At *
2 (gpa) (A,c) (A% 2 (gpe) (A, 90 (2% . (gg*) (Apel
At At A
(e ) (A pa) (Oma) (A% (Omed (4,27 N
- + -Pr'ea
A A A
% /. 0D -» CD
_ 2 () (4% () . (A:a%) (Hpc) . 2 (Ac) (A7) (gpa)
A A Ak
(A;c?) (Upa) . 2 (p) (Aaa) (9*)  (Lipa) (7]
A At A
(p) (L) (gwa) (9% 2 (A (A) (g4
i B i ¥
(J-;b:) (gdlj U-Jp) (J-:Pj (gb:) (gdlj
A ¥ Ak

Collect [%, A]
(A:a%) (Opeld = (A:c*) (Opa) - (Apa) (9c?) + (Ape) (9a7) .

i

d
T

1
m (-2 [A;a) (L) (eed + 2 () (%) (na) +

2 0Aa) (a) (0e™) - () (AP (gpa) (%) -
2 () () (ga') + () (AT (gee) (wa™)) -
Pr'ca
Rulelnigue [RiemannConformalRule,
BiemannR[ua , 1b , 1c ,1d ], %]
ApplyRules [RiemannR[ua, 1b, 1c, 1d],
RiemannConformalRule]
_ 2 () (4% () . (A:a%) (Opc) . 2 (A;e) (4% (gpa)
At A At
(A:e*) (Opa) . 2 (Ap) (A:a) (9*)  (Lipa) (2%
A Ad A
(p) (LFY (opa) (050 2 0Aia) () (9a®)
i B i ¥
(Ape) (@a?)  (Rpd (AF) (Ored (g4%)
A ¥ At

d
T




Dimension = 4;
IpplyRules[Metricg[uc, uvi] Metricg[ud, uj],
MetricConformalRule?] ApplyRules[
RiemannR[ua, 1b, 1c, 1d], RiemannConformalRule]
ApplyPules [RiemannR[ub, 1la, 1i, 13],

RiemannConformalRule]
CanAll [Expand[]]
4R () (4.F) 24 (A (AR B (A (AF) (AT
FC B FE B i B
4 (A,gF) (4,57 32 (A,p) (A;9) (A,F9) 8 (A,pq) (AF9)
s ’ FE B PG ’
16 (A,p) (A5 (BFY) 8 (d,pq) (RFY) (Fpqr:) (FFFF)
FE ¥ FE B it

Collect [-%%%, A]
24 (At amt . B p) (AF) (4,57 =32 (A,5) (A,g) (AF

as ar
8 d. LFd
w . 1 [(-4R [d.g) (.F) +
af ru
4 (-]-;pp) (-]-;qq) +8 I:J-;pq) (_]_;PC]) +16 I:J-;p) (-]-;q:l I:qu):l +
(Ppgrs) (REFA)
at

Construct the Ricci Tensor:

Expand [ApplyRules[
RiemannB[ua, 1b, 1c, 1d]; RiemannConformalRule]
Metricg[uc, 1la]]
4 (A,p) (A, 4) B 2 (A pa) ~ 3 () (AF) (dpa) .
A A A
2 (A:a) (%) (gea)  (La®) (Opal .
at A
Collect [Tsimplify[%], A]
4 () (L) - (Ag) (AF) (Upal . -2 (A,pa) - (A,.Y) (gpa)
FL A

Apply thisto Ricci Tensor:

IpplyRules[RicciR[la, 1b], RicciTohffineRule]
I:[#‘Ab:l (quqj - (quaj I:qub:l - Gypafb"‘ [#‘Ab,p
Expand [ApplyRules [%, AffineConformalRule]]

IpplyRules[%, HormCoordinateRule]
2 (gap) (PP (A, p) (A, 4) _ (9pF) (gap) (0970 (4, 5) (A, 1) _

Prg

at at
(dpr) (Fqa) (GFT) (099 (A, 0) (2
At *
(Opg) (Tap) (9FT) (g9 (4,7 (A, (gpa) (0FT (A, g0 (4,
i ) i
20,0 (A, 2 (gpF) (4,.2) (A1)
¢ ';z( b/ + F = b -G b+ P g -
(dax) (OF9) (A, pq) . (dpad (OFY) (A gp) . A,ab _ (o) (A,
A A A A
On[MetricgFlag]
Dum [%%]
4(A,,) (A,3) (fap) (A,p) (AF]
FE = - ,uP BRI
(dap) (A gF) _ 2 (A,ap)
A A

%-%[[3]] - %[[4]] + RicciR[la, 1b]
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404,4) () (e () (LB (gw) (A8

A at A
2[4, ap) R
% f.0D -=CD
4 (A0 (A1) _ 2 (A ) _ (-]-;p:l (A4,F) (Uap) _ (-]-;pPJ (San)
At A at A

R
Collect [Tsimplify[%]. Al

A (A:0) () - (Ag) (AF) (ga) . -2 (d;ap) - (A:6F) (Qan)

FL A

RuleUnique [RicciRConformalPRule, RicciR[la , 1b ],

%, LowerIndex([la] &% LowerIndex(Q[1b]]
IpplyRules[RicciR[la, 1b], RicciRConformalRule]

4 (A0 (A1) 2 (A ) (-]-;p:l (A4,F) (Uap) (-]-;pPJ (San)

At A At A
By,
Ricci Conformal Rule2:
IpplyRules[

Metricg[uc, ua] Metricg[ud, ub], MetricConformalBuls
ApplyRules[RicciR[la, 1b] , FicciRConformalBule]
ApplyRules[ RicciR[1c, 1d], FicciRConformalBule]

1 ac 4 4 (-1;1) I:J-;b)
= [(g ) — -

2 () gl (AF) (gan) _ (A FF ) (Fan)

+PR.p
A At A
[4 (A:e) (d:g)  2(1ca)  (dp) (A:F) (e q) _

At A At

A, F

( .p) (gca) +R:d]]

A
Canfll [Expand[%]]

Collect[%, A]
40 (AP +8 (4] (i) (AF) (A9 .
At

1
J._.II (8 (-]-;p:l I:J-;q) (-]-;pq:l -

4 (Ap] (AF) (AN - 16 () (A9 (AP +
(Fpql (RF) 1
S 2R AN +A D
4 (-]-;pp) (-]-;qq:l +4 (-]-;pq:l (AF9) +8 I:J-;p) (-]-;q:l (BP0 +
2R (AgR) -4 (Apq (RFY)
af

Construct the Ricci Scalar:

IpplyRules[Metricg[ua, uh], MetricConformalRule?]
ApplyRules [RicciR[la, 1b] , RicciRConformalRule]
1 [(gib) [4 (Aa) (Ap) 2 (Aiap) (d:p) (AF) (dap)

A A A At
(A:pF) (ap) ]]
_——+ Ra.b
A
Expand[%]
Tsimplify[%]
R B (AR
A

Rulelnigue [ScalarRConformalRule, ScalarR, %]

IpplyRules[ScalarR, ScalarRConformalRule]
R B (AR

At FE
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Expand[%-2]
Rt 12 R (AF) 36 (APt
3t i T

| nvariance of the Weyl Tensor

WeylC[ua, 1b, 1c, 1d] /. WeylToBRiemannRule
l a ol
_ER (- (gpa) (U™ + (Urc) (Ta71) +

1
Y ((ga®) (Fpcd = (0c*) (Rrpa) - (Upa) (Be™) + (Opc) (Ra*)) -F

IpplyRules[%87, {MetricConformalRulel,
ScalarBConformalRule, BiemannConformalRule ,
RicciRConformalRule, RicciRConformalRule?}]

1 1 1

— R (gpa) (9c*) - = B (gpc) (94" + = (9a") (Bl -

[ [ 2
1 1 1

— (") (Bpa)d - = (gpa) (Be*) + = (gpc) (Ra") -Frpiq
2 2 2

These 2 Results are the Same;

Expand[% - %%]
0

Derivation of the Conformal Field Equations

Conformal Quadratic Term:

WeylC[ua, 1b, 1c, 1d]

-(Cnca)
% f. WeylToRiemannRule

1
r R (- (gpa) (0™ + (Opc) (9a')) +

1
Y ((ga®) (Fpcd = (0c*) (Rrpa) - (Upa) (Be™) + (Opc) (Ra*)) -F

WeylC[ua, 1b, 1y, 1d] WeylC[ub, 1la, uy, ud]
(E5%) (Chaq)

Canfll [Expand[% /. WeylToRiemannBule]]
H

—R? +2 (Rpq) (FFY) - (RBpge.) (RE¥H)
Factor[%]

% (R - 6 (Fpq) (BPY) +3 (Rpgr,) (REI™°))
Tsimplify[%]

H

R

5 2 (Rpq) (RF) + (Rpqr.) (R
WeylC[ua, 1b, 1y, 1d] WeylC[la, ub, uy, ud]
- (C5%) (Cntag)

Canfll [Expand[% /. WeylToRiemannBule]]
RE

5 2 (Rpq) (RF) + (Rpqr.) (R
Factor[%]

1

Py (B - 6 (Rpg) (BPY) + 3 (Rpgr,) (RFI™°))
Tsimplify[%]

RE

5 2 (Rpq) (RF) + (Rpqr.) (R



A Topological-Type term based on the Weyl Tensor:

1
— Ep=ilonfua, ub, uc, ud] Ep=silon[li, 13, 1k, 11]
4

WeylC[ui, uj, la, 1b] WeylC[uk, ul, 1c, 1d]

(Epsilonig) (Epsilon™%) (Cp'l) (Coa™)

Expand Levi-Civita product:

Tsimplify[Canfll [Expand[% /. WeylToRiemannRule] /.
EpsilonProductTensorRule]]

i
+8 (Rpg) (FF¥) - 4 (Rpqr,) (RF¥FY)

1
— Ep=ilonfua, ub, uc, ud] Ep=silon[li, 13, 1k, 11]
4
RiemannR[ui, uj, la, 1b] RiemannR[uk, ul, 1c, 1d]

1 ‘s
5 Epsilonija) (Epsilon®*?) (Ba'l) (R

Expand Levi-Civita product:

Tsimplify[Canfll [Expand[% /. WeylToRiemannRule] /.
EpsilonProductTensorRule]]
R +4 (Fpq) (FF%) - (Rpgr) (BFF)

Perform the variation:

Variation[Sgrt[Dety] %, Metricy]
Remove derivatives from g and factor det g:
Expand [PIntegrate[%, Metricy] f Sqrt [Detg]]
Remove derivatives from 0g :
PIntegrate[%, Metriceg]

Factor out 09 :

VariationalDerivative[%, Metricg, ua, uh]
2
; (R;Ab) -2 (Rra;br) +2 (Rab;rr) -2 (Rar;brj -2 (Rrub;srj -

2 (R + % RY (g.2) - % (R.q?) (@) + Ree.™) (gu) +
(BT 2g) (922 —%R (Ra) + 2 (Ra) (FaP) + 2 (Rga) (R -
(ga) (Re) (RF) % (Rpars) (FF) +§ (Ryees) (Ra¥) +
(Rpgra) (R™) + (Rpqua) (Ry’P) +§ (2] (Reseu) (RT5)

This s the result for 60%.

Tsimplify[Canonicalize[%]]
2 1
; (R.ap) -4 (Rpa;bp) +2 (Rab;pp) -4 I:Rpaqb;qp) + E Rt (ap) -

2 2

7 (BpF) (dapd + 2 (Rpq: ™) (gap) - 3 R (Fap) + 4 (Fpa) (BeP)
1

() (Rpgd (BFI) + 2 (Bpga) (Ru™9 + Z (Qap) (Rpge) (FPT

Substitute in terms of the Weyl tensor:

% f. FiemannToWeylRule
Canill [Absorbg[%]]
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Define the trace - free property of Conformal tensor:

RuleUnique [WeylTraceRule, WeylC[la ,1bh ,1c ,1d ],
0, Pair0[la, 1b] || Pair0[1la, 1c] || Paird[1la, 14] ||
PairQ[lb, 1c] || Paird[1b, 1d] || Paird[1c, 14]]
IpplyRules[%%, WeylTraceRule]

1
-4 (Rpa;bp) +2 I:Rpa;Pb) +2 I:pr;ap:l -4 (Cpaqb;qu + ; Rf (Tan
4
7 R (Rap) +4 (Bpa) (Bp¥) - (gap) (Rpg) (FF31 - 2 (Rpgd (BJFy

1
2 (qu:l (C%F) + 2 (Cpqraj (G + E (San) (Cpqrsj (CF5)

Define Pirani’s Conformal |dentity:

Conformal [1c_, 1f ] =
—Ca.n.iul[z WeylC[ua, ub, ud, 1c] WeylC[1la, 1b, 1d, 1£] -

1
E Metricg[lc, 1£f] WeylC[ua, ub, uy, ud]
WeylC[la, 1b, 14, 1d]]

1
2 (Cpqrcj (Cfrpq) + E (es) (Cpqrsj (Cpqrsj

Use Pirani’s | dentity:

%% f. (Conformal[la, 1h])—0
-4 (Rpa;bp) +2 I:Rpa;PbJ +2 (pr;ap) -4 (Cpaqb;qP) +

1. 4 F F3
7 R (dap) - 3 R (Rap) + 4 (Fpa) (By') - (gap) (Rpgq) (B9 -

2 (Bpq) (CF71 -2 (Bpg) (C.%F)
%% f. WeylToRiemannRule
Tsimplify[Canfill [Absorbg[%]]]

2
; (R.ap) -4 (Rpa;bp:l +2 (Rab;pp:l -4 (Rpaqb;qu =
1, 2 4
7 R° (gap) - 3 (R:g) (gap) + 2 (Rpq:T) (war) + 3 R (Rl +

(Tan) (Fpg) (BFY) -4 (Fpg) (RaF)
IpplyRulesRepeated[%, RiemannRules]

2 1 1 4
— (Bap) -2 (R pF) - = B! (gw) + = (RpF) (gap) + — R (R,
3 3 3 3
4 (Fpp) (RF) -4 (Bp,) (BeF) + (ga) (Rpg) (RFT) -4 (Rpp) (R,
Thisisthefinal result:
WeylField[la , 1b ] = Tsimplify[Canfll [Absorbg[%]]]
2 1 1
; R.ap) -2 (Rab;pp:l - E Rf (Tan) + E (R;pp) (Jap) +

4
7 R (Rap) + (Uap) (Rpg) (RPN -4 (Rpg) (RSP

Check That it is Traceless:
Metricg[ua, uh] WeylField[la, 1h]
@) (2 Fon) -2 Fas® - SR (52) + 2 ®5P) @) +
SR Ra) + () (o) (P9 - 4 (o) (137
Esxpand[%]
% Roa) (0°8) -2 R pP) (0] -
1 _; "y 1 ik 4 ik
S (g (0% ¢ 2 R @) @)+ SR ED) Ra) s

(Tan) (0 (Rpg) (RPY) 4 (o*F) (R (Ra%F)
Absorhg[%]
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2 2
- (R;pp) + — (B,
3 3

Tsimplify[%]
0

Input the Mannheim - Kazanas Result:

Wi[la ,1b ]-=
ﬁhsurhg[2 Metricg[la, 1h] CD[ScalarR, 11, ui] -
2 (D[ScalarR, 1la, 1b] - 2 ScalarR RicciR[la, 1b] +

1
3 Metricg[la, 1b] Scalark’]
1 :
-2 (R + 3 B* (gap) + 2 (R') (gax) - 2R (Ra)
W2[la , 1b ] -
1
ﬁhsurhg[? Metricg[la, 1bh] CD[ScalarR, 1i, wi] +

CD[RicciR[la, 1b], 1i, ui] -
CD[RicciR[ui, 1a], 1b, 1i] - CD[RicciR[ui, 1b], 1a, :
2 RicciR[ui, 1a] RicciR[1b, 1i] +

; Metricg[la, 1b] RicciR[1i, 1j] RicciB[ui, uj]]
Rapi' =R mi - Fa'ai+ % (Roi') (ga) - 2 (Ra') (Rea)
1 i
Fy fgap) (Rigd (RM)
W2[la, 1b] - % Wi[la, 1h]
Rapi' - Rt i -Falai+ % (Bt () +

1 1 ;
S (2 o) - S B () - 2 (Rs®) (9) 2R (Ran) ) -
2

; 1 ‘s
(R.') (Rpi) + 3 (gap) (Rig) (R*T)
Thisis Mannheim (Open Questionsin ...) - Eq. (15):
Tsimplify[CanAll[%]]
2 1 1
; (R:ap) _Rpa;bP'pr;ap"‘Rab;pp' E Rz (Jap) - E (R;pp) (9,
Z 1
7 R (Rap) -2 (Fpa) (FeF) + 3 (gap) (Fpg) (RFY
IpplyRulesRepeated[#48, RiemannRules]
1 1 1 Z
- = (R.a) + B P - = B (map) - = (BF) (o) + — B (Ra)
3 & & 3
1
(Bpp) (BF) -3 (Fpa) (FpF) + Y (gap) (Fpg) (FFY +

(Fpq) (RFp7) + (Rpg) (Bu%F)
Tsimplify[Canfill[%]]

1 1 1
-= (Rom) +RappP - = R (map) - = (B.F) (ga) +
a3 5] 5]
z 1
TR Ra) -4 (Rpa) (FpF) + = (a) () (FET) + 2 (Fpq) (R,

Check That (MK) is Traceless:

Metricg[ua, ub] %
(a**)
(-i (Ro) +Rag® - = B (1) - = (Rg?) (Ga) + = R (R
3 i ip 5 a 5 ip 3 a
1
4 (Rpa) (Fef)+ 3 (dap) (Rpg) (BFY 42 (Rpg) (Ripbql]
Expand[%]
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1 1
-5 Ria) (g + (Ra 7 (g°) - ERE (gar) (g -

1 z

= (RpF) (Tap) (%) + SR (') (Rap) - 4 (g (Rpa) (ReF)

1

= () (") (Rpq) (FPY) +2 (g*F) (Rpq) (R.P¥)
Absorhg[%]

1 1

3 (5 - 5 (%) + 4 (Fpg) (RPT) - 4 (Rp,) (RF%)

Tsimplify[%]
0

Tensor Calculationsfor the Conformal Spherical Metric

Evaluate Ordinary Derivatives:
On[EvaluateODFlag]

Load the File:

<= MK.m
HMetricgFlag has been turned off.

Display the Metric ("4" Labels the time coordinate):

Table[Metricg[-1i, -1, {i, 4}, {1, 4}]

e iaas 0O 0
0 2 o o
o 0 —r? givd(thets) 1]
i 0 0 ur—kz—%—mrh

Here are the non-zero Christoffel Symbols T (Schwar zschild):

connection = [};
Do[
If[
RffineG[i, -3, -k] =!=10,
connection = {connection,
SubscriptBox[
SubscriptBox[SuperscriptBox[I'; 1], j]. k] ==
Affine[i, -3, -k] 7/ DisplayForm},

Continue[]].,

{i, 4}, {3, 4}, {k, 4}1:
Simplify[Flatten[connection]]
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El+r® (k3-2k4r)
Zr(kl+r (-l+k2-k3r+kdr))
Thi==kl+r(-l+k2-kir+kar'y,
Thy == (kl+r (-1 +kZ -k3r+k4r’)) Sin[theta]®,

{I‘lll ==

e (El+rf(k3-2k4r)) (kl+r (-l+k2-k3r+kdr
44 P

1 1
Thy== =, Ty == —,

r r
H . 2 1
T34 == -Cosz[theta] 3in[theta], I''14 == — ;

r

1
T%,, == Cot[theta], T¥y == —, T%,; == Cot[theta],
r

o EL+z! (k3 -2k4r)
T T Sy kler (-l+kZ-kar+kari))
i EL+z! (k3 -2k4r) |
i Zr(EL+r (-l+kZ-K3r+kari))

Display the Ricci Tensor :

Table[Simplify[RicciR[-i, -311, {1, 4}, {3, 4}]

k3 -3k4
{ = ,0,0,0},
El+r (-l +kZ k3t +kdrd)

{0, kZ+r (—2k3+3k4r), 0, 01,
{0, 0, (EZ2+r (-2k3 + 3k4r)) $in[theta]?, 0},

(-kF+3k4r) (kl+r(-l+kZ-k3r+k4zri)) }}
i

{U, a,a,

r

Display the Ricci Scalar:

ScalarR
2 (k2 -3k3r+6kdr?)

ri

Non-zero Components of the Weyl Tensor .

wmeyl = {}:
Do[
If[
WeylC[i, -3, -k, -1]1 =!=10,
weyl = {weyl,
SubscriptBox[SubscriptBox[
SubscriptBox[SuperscriptBox[C, 1], j1: k], 1]
WeylC[i, -3, -k, -1] /f DisplayForm},
Continue[]].,

{i, 4}, {3, 4}, {k, 4}, {1, 4}]1:
Simplify[Flatten[weyl]]
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{1 3kl +kEr
Chyg == -~——
6t
N k2 kL, (3kl +k2r) Sin[theta]?
Chepy == 0+ 20, Chypp == - .
& ZE 6 r
1 {3kl +kZ r) Sin[theta]®
Ly == .
6t
N (3kl+k2r) (kl+r (-l+k2-k3r+kdriy)
Chy14 == N
St
N [kl +kZr) (kl+x (-l +kZ-k3r+kaciy)
Ci-i_'l_==_ I
art
. Fkl+kZr
Cf1yp == - .
Ertkl+r (-l+kZ-k3r+kdriy)
. Gkl +k2r
L1y == .
Ert (kl+r (-l+k2-k3r+kdriy)
: (3kl +kZr) Sin[theta]?®
Loy == .
3k
. {3kl +k2 r) Sin[theta]?
Cf2ap == - .
3r
. (3kl+k2r) (kl+r (-l +k2-k3r+kdriy)
Clypy == - .
grt
. [kl +k2r) (kl+r (-l+kZ-k3r+kaciy)
Cfaqp == .
frt
s Fkl+kZr
C1yy == - .
Ertkl+r (-l+kZ-k3r+kdriy)
s Gkl +k2r
Co1ay == .
Ert (kl+r (-l+k2-k3r+kdriy)
k2 k1l k2 k1l
e 4y == 0, gy = — v —,
3 r 3 r
s (3kl+k2r) (kl+r (-l +k2-k3r+kdriy)
Coyyy == - N
grt
s [kl +k2r) (kl+r (-l+kZ-k3r+kaciy)
Claqy == < .
6t
. Gkl +k2r .
Co14 == s Bi1gg ==
Srt (kl+r (-l+k2-k3r+kdri))
Jkl+kZ2r 4 k2 kl
- Bl == — + —,
Srifkl+r (-l+kZ-k3r+kari)) 6 2t
. Akl +kZr (3kl +k2r) Sin[theta]?
Dy = 0" Oy, = .
& 6 r
. {3kl +k2 r) Sin[theta]?
C%ygy == - }
6t

Substitute into the Conformal Field Equation:

Tahle [Simpli £y [MakeSum [WeylField[-i, -3111, {i, 4},
{1.4}]
2 (-2kZ+k28+3k1kT)
{{_ Fr¥(kl+r(-l+k2-k3r+kdri) ’
{0, 2 (-2kZ+k2’ +3k1k3) o, 0},
3ri

{D’ - 2 (-2k2+k28+ 3k1k3) Sin[theta]? ) u}, {D, o,
3rt

2 (-2kZ+k2%+3k1KE3) (kl+r (-l+kZ-k3r+kazri)
Ir®

0,0, n},

r
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Appendix F: Newtonian Phase-Plane Analysis

As discussed earlier in Chapter 5, the standard analysis of the Newtonian orbital
dynamics is based on the change of independent variable, t — ¢, for the purpose of

finding a closed form solution describing the orbital geometry. But a phase-plane
analysis of the differential equations using time as the independent variable is no more
complicated in principle than using ¢ . Furthermore, there are results shared by the
relativistic case (discussed in Section V1) that are clarified in this analysis.

To begin, consider the Newtonian limit of the equations derived in Section II.

The effective potential/(unit rest energy) is listed in (5.14), and is defined as \7;f which

gives the proper Newtonian limit for \7eﬂ (to within an additive constant) in the limit of

larger. Asaresult, the Newtonian limit of (5.14) is given by

A

Vy =[L-x+(¢=x%) 1 20] " =1-x/2+x | 40, (F.1)
which differs from the standard Newtonian form by the addition of an additive constant
(corresponding to the rest mass energy of m,). The standard Newtonian effective

potential energy is chosen to be zero at infinity which gives the usual expression:
V, =x2/40-x/2, (F.2)

compared to the relativistic limit where the energy at infinity corresponds to the rest mass
energy. But this additive constant is of little consequence insofar as the dynamics are
concerned, and so we adopt (F.2) for the remaining discussion.

The corresponding Newtonian expression for (5.44) is derived using the standard
Lagrangian and Hamiltonian results:

(r./c)? % = 2x4[é ~V,, ] , (F.3)

where V. is given by (F.2) and x = r./r. Although this choice of units seems odd &t

first, the most straightforward comparison with the relativistic case is obtained in this
form. As a check, (F.3) reduces to the equation (after substituting (5.2), (F.2), and then
(5.13)):

(du/ dt)® =-u*(J/ m)*[v* - 2u,u— 7], (F.4)
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where u=1/r and u,=GMnr/ J? gives the standard radius of a circular orbit. The
constant: b’ =1/b*=2mE/J?, expresses the impact parameter (for a particle
approaching from infinity) in terms of E and J. The zeroes of (F.4) give the standard
turning points of the effective potential (aside from u=0). Furthermore, substituting
u=u(¢) and then (5.6) into (F.4) (the Newtonian expression for J is identical in form to
the relativistic case) leads to the standard second order differential equation that is
commonly evaluated for the analysis of these orbits.

Continuing with the analysis, differentiating (F.3) gives the dimensionless phase-

plane equations expressed using t as the independent variable:
X =y = +X°C[40E +20x - x*)|Y? I r/20

A (F.5)
y = -x°c*(3x* -5ox -80Ek)/ 20t
Solving simultaneously, x =y =0 for E? and x then gives the two fixed points:
{x,=0;E=-0/4 and x, =0. (F.6)

The first gives the standard results: a center node corresponding to a Newtonian circular

orbit with radius r, and energy given by

x,=c O r=rlo=J3%GMnt 7
E=-0/4 0 E=-mGMm/J)?*/2

The second fixed point at infinity simply expresses the fact that it takes an infinite
amount of time for the orbiting particle, m, to reach the turning point at infinity (in the
case of parabolic and hyperbolic orbits) - a fixed point that is shared in the relativistic
orbital dynamics. For comparison with the relativistic phase-plane results the Newtonian

phase diagram for (F.5) is shown in Figure 35.
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Figure 35. Newtonian Phase-Plane Diagram with t as the Independent Variable (o
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Appendix G: Miscellaneous Calculations — Chapter’'s 5 and 6

An important analysis tool will be Mathematica's Implicit Plotting routines
(ImplicitPlot). There are several ways to specify a curve in the plane using
Mathematica. A different plotting function is used for each of these methods.

The most basic graphs of functions are plotted using the Plot routine. Curves

given parametrically are plotted using the ParametricPlot routine. However,
ImplicitPlot plots curves that are given implicitly as the solutions to a specified

set of equations.

The function, ImplicitPlot, can use two methods to plot the solution to the given
equations. The method that is used is determined by the form of the variable

ranges given. One method uses the Solve routine to find solutions to the equation

at each point in the x range. It avoids singular points, plotting to within
machine precision of those points, to generate an apparently smooth graph. This

Is the method used if only the range for x is specified. The second method treats

the equation as a function in 3-d space and generates a contour of the equation
cutting through the plane whereveequals zero. This method is faster than the
Solve method and handles a greater variety of cases, but may generate rougher
graphs, especially around singularities or intersections of the curve. This

method is used if the ranges for batandy are specified.

Load the Libraries:

<< Graphics ImplicitPlot’
<= braphics’ Graphics’
Off[General::spelll]

Schwar zschild Calculations and Graphical Analysis

Schwarzschild Equatorial Algebra:
Simplify[Solwve|

[Sart[208-(20+%) (1-x)] == 0, [%x?_x +u] ==1

{x. E}]]



., leyI-6o-8(-3+41-60)0c 1
{{E—} s X = [Le1-6
270 3
. l-yl-Ga+6(3+41-Ba)a 1
{E—> - ,x—»;(l— 1-6a
o

Schwarzschild Proper Time Algebra:

. . (-1+x) (¥ +20) ,.l
Simplify[Sol S Sl it ) (VSRR
:umly[n\re[{x oe +
*¥(-6%+7x +Wxo+80[-1+E]) .
40 = }’
{=x. £}]]
., leyI-6o-8(-3+41-60)0c 1
{{E—} s X = [Le1-6
270 3
. l-yl-Ga+6(3+41-Ba)a 1
{E—> ;X = [L-yI-60
270 3
x-0y}

Schwarzschild Coordinate Time Algebra:

(-1+x) (2 +2 0) B

Simplify[Sol “1+x)° ==,
:umly[n\re[{( +H)° X oe
((-1+xmx[-15 +9x* + 26 (347 0) -
8o -1+ B)+2xo0(-11+6E)) ) ==0},
{x. £}]]
., leyI-6o-8(-3+41-60)0c 1
{{E—} s X = [Le1-6
270 3
. l-yl-Ga+6(3+41-Ba)a 1
{E—> ;X = [L-yI-60
270 3
=0}, (x= 1, x= 13}
Simplify[Solve[(-1+x)°x |w +Bf==0,1
T

{{E—}— (—l+x)2(:2+2crj }}

1

=g —
g -

m=.1;
Plot[effroots /. {o-= on}, {x, -2, 12}]

i@

-2 }\1_5/5 10 1z
-1

= Graphics -
Plot[¥ f. {o-- on}, {x, .7, 20}]
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= Graphics -
Plot[¥2 /. {A--2An, ov-=omm}, {x, -.5, 1}]

= Graphics -
el=VY/. {o->omm, x--1.83172233953162109"}
0.130734
e2=V¥/f. {o->-om, x--8§.162277166016537819"}
-0.0586601
¥X1=1f2;x =1.9; yr=1;
pl = Tahle [Itmlicitl'lut[
L ke SR Y {3+ An, 0 -> on},
20
{x, -x1 , xr}, {¥, -¥r, ¥r}, PlotPoints -- 50],
6, -1, 1, .5}]
{=Contourbraphics -, - ContourbGraphics -,
= ContourGraphics -, - ContourGraphics -,

= ContourGraphics =}

¥ -3 +%%)
20

{x, -x1, xx}, {¥, -¥r, yr}, PlotPoints - Bll]

sepl = Ilmlicit.l’lnt.[ el== x| /. {o-=om

= ContourGraphics -
sep2 = InplicitPlot|

4
e
|]==M_x+£ Fo A —»an, 0=

{x, -¥x1, xx}, {¥, -¥, ¥r}, PlotPoints - Ill]]
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= ContourGraphics -
Show[{pl, sepl}, PlotRange -~ {{-x1, xxr}, {-¥r, ¥r}},
AspectRatio -- . 8]

Q.75
0.5
085

= Graphics -

The same caleulations and rnurmerical work were used in each of the following cases -

a=0:

Schowrarzechild Mull Geodesics

Plot[-x" +x°, {x, -1/2, 2}]

= Graphics -

Sl:ilu.re[])[—:u:3 %, x] ==10, x]

fosor, e 21

el=-x +% /. [xa%}
4

27
¥X1=1;xxr=3; yr=2;
pl = Tahle [DT[JliCitPlDt[
(B==¥-x+¥), {x, ¥, =}, (¥, -¥r, ¥}],
{8, -2, 2, .5}]
{=ContourGraphics -, = ContourGraphics -,
= ContourGraphics -, = ContourGraphics -,
= Contourlraphics -, = ContourbGraphics -,
= ContourGraphics -, - ContourGraphics -,
= ContourGraphics =}
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sepl - InplicitPlot[{el=- ¥ - ¥ + ¥ |, {x, -1, xx},
{¥. -¥r, yr}, PlotPoints —- 80]

= ContourGraphics -

sep? - IpLlicitPlot[{.05== ¥ -x +x° |, {x, -x1l, xx},
{¥. -y, yr}, PlotPoints —> 50]

= ContourGraphics -
Show[{pl, sepl, sep2}, PlotRange -» {{-x1, xx}, {-¥T, ¥
AspectRatio -- . §]

S
TN

= Graphics -

Schowrarzschild Phase — Plane -

¥2Plot =

Plot[V2 /. o-= 179, {x, -1/2, 1.25}, FlotPoints - 50
= Graphics -
Simplify[Solve[D[V2, x] == 0, x]]

{frs 2 (1-VT=B0) ), frs 2 (1o T80}

el- Simplify[(¥2 7. %%[[21]1) F. 0 -> 1/9]

1
943
¥X1=1f4;x =1.2; yr=.19;
pl =
L ¥a+x-x
Tahle[Ilmllnut.Plnt.[lﬁ == |T —xl foo-= 1,’9]

{x, -x1 , xr}, {¥, -¥r, ¥r}, PlotPoints -- 50],

{6, -1.2, .2, .1}]
{=ContourGraphics -, = ContourGraphics -,

= ContourGraphics
= ContourlGraphics
= ContourGraphics
= ContourlGraphics
= ContourGraphics
= ContourlGraphics
= ContourGraphics

sepl = IlmlicitPlnt[

=, =ContourGraphics
=, =ContourGraphics
=, =ContourGraphics
=, =ContourGraphics
=, =ContourGraphics

=, =ContourGraphics

|1v2+x2—x3
el== | —
20

—xl f.o->1/9

{x, -x1 , xx}, {¥, -¥r, yr}, PlotPoints - 8l]]

= ContourGraphics -

sep? = Ilmlicit.l’lnt.[ |— .05 =

foo-—=1f

{x, -xl, x}, {¥, -¥r, ¥y}, PlotPoints -= 50]
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= ContourGraphics -

PhasePlane = Show[{pl, sepl, sep2},
PlotRange - {{-x1, xx}, {-.4, .4}}]

= Graphics -

Show[PhasePlane, V2Plot, AspectRatio - . 7]

= Graphics -

Coordinate Tire Phase — Plane -

o x*[1+%](1—x]3
e=S:|er11fy[ TR —1]

(~l+x)¥xtxt+zm

T2 (xt-Zxfaxf-vyi o

Coordinate Time Phase-Plane Equations:

& 2
x[x] |f:2- |1+ x[x] ] (l—x[I]]] i
2 20

¥Izl® ==

£t Ef(l-x[z])

[c]? (L-x[enfx[)* (£ - (1 -x[z]) (l"%”
¥le]® ==

ﬁ:i

Simplify[D[%5, 1] f. ¥[t] - x'[z]
2x'[t] ¥'[t] ==

i
(t-lexizl)x(e]® (-8o (-1+E') v20 (-11+ 6 E") x[e] +
2(3+7mxle]® - 1Ex(e]® +9x(c]?)
x'[r])
Simplify[Solve[%8§, ¥y'[z]1]1] f. x[t] --x
{{y‘[z] Lt ((-Lex)x® (15 +oxt o 2x! (347 0) -
-z
4agE

8o (-1+E) +2xo(-11+6E"))] ]}
Simplify[
[-15% +9x' +2x° (3+1|I]—8|I[—1+f:2]+2xu[—11+6ﬁ
S5kt voxtezxt (347m 80 (-1+EY) s2xa{-1146E)

Proper Time Phase-Plane Equations:

x[t]?
20

¥[z1® == x[*]* |ﬁ2- |1+ l(l—x[tlll

3
izt ==zt [Ez_ (Lxie]) [1+ x[z] ]]
20

Simplify[D[%, ¥]1] /. ¥[¥] - x[1]
zx'[t] ¥'lT] ==
x[z]® (8o (-1+E2) +10ox[c] -6x[c]+ Tx([c]®] ' [T]
20
Simplify[Solve[%, ¥y'[z]11] /. x[¥] -~ x
=* (—6x2+?x3+lﬂxcr+8crl[—l+f!2”

ffre- 70 g

V2 - Expand [Simplify[% /. ¥ -= 01]

V2Plot =Plot[V2 /. o-= 19, {x, 0, .8}]
= Graphics -
critical = Simplify[Solve[D[V2, x] == 0, x]]

{frs 2 (1-VT=B0) ), frs 2 (1o T80}

¥=.1x=1.1: yr=.2;
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pl = Table[ImplicitPlot[(f=-¢e f. 0-= 179,
{x, -x1 , xx}, {¥, -¥r, ¥r}, PlotPoints - 201] ,
{f, -.2, .2, .05}]
{=ContourGraphics -, = ContourGraphics -,
= ContourGraphics -, = ContourGraphics -,
= Contourlraphics -, = ContourbGraphics -,
= ContourGraphics -, - ContourGraphics -,
= ContourGraphics =}
PhasePlane = Show[{pl},

PlotRange - {{-x1, xx}, {-¥yr, yr}}, hspectRatio -- 1
]

= Graphics -

Reissner-Nordstrom Calculations and Graphical Analysis

Effective Potential Equations: let ¥ ==%-1

Critical Paints;

+x2+%+x2—x3

V=-x
2A 20
& w2
Ko 2= 0
X+ ir (FOX
24 20
Simplify[D[V, x]11;
effroots =
Collect [E [2x3—3x2].—2.2.u+2x(l+u]] 1
ollec and
i 2w ’
1 1 axt  x?
—l+:-c|:—+—]——+—
A T 20 Aa

Simplify[Solve[effroots == 0, x]]



xl=2—14 |121+ (6I{T+~/3) [—4.1+3.12—4u]]X

1
I—5412+2'?.13+543.u+—
2

*V'r291612(—2).+.12+2u]2+4(—9.12+12 (A+0)

(1/3) -
225 [1+143) I—1l182.2+54.13+1l]82.u+

A 291622 (“2 A+ 22 4200 +4 (<92 +12 (A + 0))
(1f31]:
1 2
X = — l121+ (2(1+T+/3) (-92% 12 (1+u]]]/
24

1
[—5412+2'?13+54Jtu+—
2

{291512(_21+12+2u)2+4(_9,12+12 (A+m)

(173)+
I227(T+43) [—10812+5413+1l1810+

\J‘2916.12[—2.1+12+2u]2+4[—9].2+12 (A+0))

[1;‘3]]:
Xz =

% [61+[6[—4l+312—40]]/I—5412+2113+54104

{291512(_21+12+2u)2+4(_9,12+12 (A+m)

(1730 +

921F [—1!]812 +542% 108 A0+

\J‘2916.12[—2.1+12+2u]2+4[—9].2+12 (A+0))
[1;3]]:

The second derivative - Inflection Points:

Simplify[D[V, {x, 2}1]
GxieAd-3XA+0a

EN:y
3+ A-IxA+0 «1:
— e ] x]:

1,
i}

inflec = Collect [Expa.ml[

Simplify[Solve[inflec == 0, x]]

{{x—}% [314;‘912_12 (L+ )

1
{x—;g [31+ 91 12 (A+ )

Schwarzschild and RN Plots:
L Xox

20
An=2:m=1/9;
Plot[{¥/. fA--2n, o->=mm}, V5 /. {A-- AN, 0 ->=mn}},
{x, -.2, 2.6}, PlotRange -- {futomatic, {-1, 1}}]

V5= -x
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[r- 1 1.5 2 2.5

= Graphics -

Effective Potential Descriminant:

1 1
a= —a- = (@)%
3 9

1 1
r=—ia a; -3ag) - — (az)*:
6 27

d-= q3 + rz:

Collect [Expand[A ceffroots], x, Factor]
y 3xPa

® - —Ag+x (A+d)

simplify[d . {a; - —; A, ap-» (A+ @), ap -» - o}]

1, : s At asod
— L (-2A+ A+ 2T | -— +
G4 4 3

desV = Collect |

1 A2 Aoy’
Expa.nd[ﬂ|Elz[—2l+12+2u]2+|—T+ ; ]l]

v, Factnr]

1 3
A i-lessn s =i B-zla+0ah 0=
16 E

3
Ai-le+3a ot e
16

oroots = Simplify[Solve[desV¥ == 0, o]]



A(-16+3 A)-

0= —
T

3A%(-64 +31LA)
(A [-512+352A-47A2+16+/-2+ 2 (-s+5A]3H]]l

3[A*[-512+352-2727 + 164 -2+ (-8 +520°7))

0= — |2A(-16+3F )+
32

3(1+T N3 )2 (-6 4312)

(A% [-512 4352 R-4722+ 164/ -2+ A (_s+51]3f2]]1

3IT(T++3)

(A*(-512+352A-47A% + 164/ -2 42 [-3+5A]3"2]]]

1
os- — |[2A(-16+3 A0+
32

3(1-I~3 )2 (-644312)

(A [-512+352A-47A2+16+/-2+ 2 (-s+5A]3H]]l

3(1+I43)

(A% (-512+352 412+ 164 -2+ 2 (_a+51]3’*]]]

Plot the < roots:
Plot[{Re[H[r /. {A -= An}]],
Re[H[o: /. {A -> An}]1], Re[H[o: f. {A -~ An}11},
{An, -1, 6}, PlotRange -= {{-1, 8}, {-6, 2}}]

Plot[{Re[H[e1 /. {A ->An}]], Re[H[e: /. {A -= An}]],
Re[H[o: F. {A -=>2n}]], Im[H[oy /. {A-- An}]],
Im[H[ez /. {A ->An}]], Im[H[es /. {A-= An}]]},

{An, -2, §)}, PlotRange -= {{-1.5, 6}, {-4, 3}}]
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= Graphics -

Linear Stability ~=-1:
An = -1; TableForm[Table[
(H[x /. {A ->2an, 0 -=om}], H[x f. {A-- AN, 0 ->on}
H[®x f. {A-=3n, 0 --m}], on},
fon, -2, 2, .2}1]]
Plot[{Re[H[x /. {A --An, o -=om}]],
Re[H[x: /. {A ->An, o ->m}]1],
Re[H[x: /. {A ->An, ¢ -=on}]]}, {on, -2, 5},
PlotRange -- {fAutomatic, Automatic}, AspectRatio - . 4§

/”/}2‘

= Graphics -
:u:2+i oy
Voo x+_— 27 -
2a 20
An=-1; on=-1;
Plot[¥ /. {A->An, o-- om}, {x, -2, 2},

PlotRange -- {Automatic, Automatic}]




= Graphics -

An=-100; on = -1;

(HIx §. {3 ->2m, 0 —=m}], H[x /. {A - An, o ->on}],
Hlx: f. {A - AN, 0 -» on}]}

[-0.547134 + 1,89478x 1074 I, _150.666 + 0. I,
1.21309-1,89478= 1071 1)

(HLoy §. {A ->2m, 0 —=m}], N[0z /. {A - An, o ->on}],
HLo: f. {A -+ An, 0 -» on}]}

{0.112725, 1.72489 +3.20938 I, 1.72489 - 5.20938 I}

An=-1; on = 4000000;

(HIx §. {3 ->2m, 0 —=m}], H[x /. {A - An, o ->on}],
Hlx: f. {A - AN, 0 -» on}]}

{-0.25-2000. I, -0.25+2000. I, -1.}

Find intersection point of the «::

Expandill [o:]
Re[%]
Expandill [o:]
32t
16
(12a%) f{-s1zat+3522% - 472" —lze v 2 a A% B 55
B0 Z+x W BaSA)A (L3 -
(934 /
(16 (-512a* +3522° -472° 128+ 2+ X ' 8451 +
B0 Z+x W BaSA) LA,

3 % 5 3
= (-51z2 3% +3522% - 474" -

-4+

+

1zay z+x At Be5a 00y 2+x P ma5)

(1/3)
(9 (5419 -311%.

(A% (-S1z+3522-a72  + 164 2+ 1 (—8+5J.)3'f2:|)2

/

(32 (3% (-512+3522- 472+ 162+ 1 (-84 50)"%))Y

i}
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Simplify[Solve[9 [64 Aot

(A*(-512+3522-412° + 16 4/ -2+ 2 (-8+52)°7)

I]J'
Al 16

[ta=0y, {1-:.3 (1143437}

H[%]

{110}, {1 5.51358})

Linear Stability &= —=:

Series Expand 1:

Hormal [Series[oy /. A -=1f6, {f, 0, 1}]]
Expand[%]

. 6-=17A

Collect[%, A, Factor]

H[*]

0166667+ 0923928 0 4 1.30867x 1008 ¢
A

10+ &/710
54

5
Series Expand <z :

Hormal [Series[o: f. A -=1/6, {f, 0, 1}]1]
Expand[%]

. 6-=17A

Collect[%, A, Factor]
H[*]
(-0.0833333 - 0.839146 T) - 0.046296310.8334091 _
{1.5+1.93643 ) A+ (0.28125 +1.81546 I3 a?

Series Expand = :

Hormal [Series[os f. A -= 176, {f, 0, 1}]1]
Expand[%]

. 6-=17A

Collect[%, A, Factor]
H[*]

(-0.0833333 +0.5839146 I) - 0.04s2563 ;D' F3409 1 -
{1.5-1.93643I) A+ (0.28125-1.81546 I3 a?

Series Expand =

Hormal [Series[x; f. {A -= 178}, {F, 0, 1}, {o, 0, 1}]]
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i(i(hlﬁ) {los-36 143 ) +
24 ‘27
§I(I+v3) (-g %(54 1BI43)])
[ 321 1na+351w‘_)2]

27 -\.f_ 13122

[ 3(1+143)

BI(I++v3) [_E (54-18I1+3) +

eE
2

2743 G561
5+
1
En
(a1+3 [1+1+3) - 44_(1+J_))+EZ[_3U+1
41(_103+351ﬁ) 1 l:lDS+lSGI\l"_)]
gl 3 g
6T (I++3) [-3- 51 +i(_i(54+?81ﬁ'
3 343 2 o8l -
——(a(-541+3 (5a-181+3)+
65561
541@(-54+131ﬁ)))]]]
d
Expand[%] /. {f-> 1/ A}
2,5, 20
ERETE R

Series Expand = :
Hormal [Series[x; f. {A -=1fF6}, {F, 0, 2}, {o, 0, 2}]]

%(—4Iﬁ(l+lﬁ)+4ﬁ(l+ﬁ))a+ —

(-6143 (1+143) +643 (I+ﬁ))+% [3I(I+

4T3 +

34992 +324I 43 (-108+ 361+ 3 ]
.

1312z
2(1+143) (41\-’__; (_414__
{a(8746-81T1+3 [54-18TI+3) +

6561

BLIVI (-54+131ﬁ)))]]]

&
o
Expand[%] /. {f-> 1A}
gt of
o+ - —

2 A



Series Expand = :

Hormal [Series[x; f. {A -= 17}, {6, 0, 1}, {o, 0, 1}]]

1 (i (-108436T43) +6 (-ga,i (54481@)]] .

1z ‘27
3 1 [ [ 321 (—lDE+35I“\E)2]
3 |- +

= = -
27 ﬁ 13122

28 1z

g% (54-18143)+

243

1| sz 4(54-18143) [-544181+3)
2 2743 6561 ]]
G+
i[a 41(_108+361ﬁ)+i(1na+1551ﬁ)]+
12 a1y 3 gl
6l-2. 21 +i(-i(54+?81ﬁ)-
3 a.3 2 8l
L _(4(-5414F (54-181+3) +
6561
54T+ 3 (-54+181ﬁ)))]]]
B

Expand[] f. {f-» 1724}
z g 31 zZo

A similar analysis has been considered for the other parameter values:
Linear Stability +=+1:

Linear Stability #=3/2:

Linear Stability #=2/5:

Linear Stability +=16/2:

Linear Stability +=1%:

Linear Stability +=2:

Linear Stability A = 2.1:

Thisis Brigman’s Center :
£[1] = x[2]; £[2] = —= x[11° + — x[1]? - [1+ 1]::[1] 0
a 2 A

A = Simplify[

Table[D[£[i], x[31], {1, 1, 2}, {3, 1, 2}] /. x[1] =2
roots = Simplify[Solve[£[2] == 0, x[1]]1] /. x[1] -= x:
terms = Expand[& f. roots[[1]1]1]1[[2, 11]:

Table [Hormal [Series[
Part[terms, 1] /. {A-=1F756), {f, 0, 1}]11 7. {F-=-1.
{i, 1, Length[terms] }]:
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This g|ves —* leading to eouatinn (20) ;

Expand[Sum[%[[1]], {i, 1, Length[term=] }]1]
1
-1 3.
+[3-3)0

Correspondingly, this gives —«”:

This is the usual Reissner-Nordstrom Center node

R, {x-=x}

Simpli £y [*]
Expand[%[[2, 1]1]
Length[*]
Z0
Table [Hormal [Series[
Part[%44, i] /. {A-> 1/}, {B, 0, 1}]1/. {F-= 1A
{i, 1, 20}]
Sum[%[[i]], {1, 1, 20}]
Expand[%]
4 = o
I — - —  —
94 4 34
Expand[%]
I\/—Zglﬁ (Z£ - 40) + 2916 (4+4m)
2 40 E
-——t — ¢ +
94 3a 3643

Ix/-zgls (%-w) +2916 (4 + 4 0)

+

54403 4

321&\/_2915 (%_aw) +2916 (4+ 4T

1 [-38586 + 23328 0)

2521@0\/_2915 (%_40) +2916 (4+ 4T

A (-3888+ 23328 0)
Series[%49, {o, 0, 1}]

1
1+ (3- —] EIE

%
Hormal [%]

1
1+ (3 - —] T

%
Expand[%]
lezg- 2

i
Collect [%37, A]

& [

9 Tty

[ S
1



A

Abramowitz, 96, 120

acausa geodesic, v, 11, 120

adjoint, 33, 165, 167, 170, 171, 175

anholonomity, object of, 38

antisymmetric symmetry, 15, 18, 21, 35

Armenti, 117

Arnowitt, 2, 214

Ashtekar, vi

attractors, 129

automorphism invariance, 15

auxiliary condition, 6, 36, 55, 57, 58, 59, 60, 61, 67,
127

Baekler, 4, 48

Balkey, vi

Bardeen, 129

Batemann, 63

Bertotti, 117

Bianchi identity, 15, 21, 34, 44, 57, 67

bifurcation diagram, 10, 94, 100, 105, 107, 110, 112,
114, 116, 119, 123

black hole horizon, 10, 11, 29, 73, 82, 86, 88, 89, 90,
92, 120, 131

black holes, v, 8,9, 10, 11, 29, 30, 73, 74, 82, 88, 94,
95, 114, 123, 126, 128, 130

Bonnor, 30

Boucarut, vi

Boulware, 31

Brans-Dicke Theory, 8

Brigman, v, 11, 120, 207

Brill, 7

Bronstein, 117

Buchdahl, 2, 214

Burman, 95, 117, 118

Burns, vi

210

| ndex

Camenzind, 3, 214

Carméli, 55

Cauchy, 120

Chandrasekhar, 8, 115, 120, 129

chaotic orbits, 8

Christoffel Connection, iii, 2, 13, 21, 24, 37, 40, 41,
46, 54, 56, 58, 133, 137, 139, 187

Clifford Algebra, vi, 32, 167

conformal invariance, v, 7, 48, 55, 63, 64, 66, 68, 71,
120

Content, vi

coordinate reference frame, 10, 73, 89, 90

coordinate singularities, 22

cosmic censorship conjecture, 9, 30, 31, 106

cosmological constant, 53, 60

Crawford, vi, 15, 16, 34, 36, 50, 209

curvature orthogonality condition, 4

D

Dailey, vi

Davila, vi

Dean, i, vi

Debney, 5, 6, 61
descriminant, 96, 97
DeWitt, vi

Dirac, 4

Dorenzi, vi

Dukes, vi

E

Eddington, 2, 8, 9, 30, 39, 56, 64, 95, 214
Einstein field equations, 26, 31, 45, 50, 60
Einstein space, 3, 45, 53, 59, 60, 62, 128
Einstein tensor, 26

Einstein universe solution, 53, 59, 60, 62
Eingtein-Cartan U4 theory, 15



24, 26, 32, 38, 40, 54, 70, 127, 132
electricfield, 8,9, 27, 28
€l ectromagnetic sources, 26, 27, 41
electron gas, 9, 30
Esteban, 80
Euler topological invariant, 41, 66
Euler-Lagrange equations, 24, 74
event connection, 42

F

Fairchild, 3, 4, 6, 35, 42, 53, 54, 61
Ferer, vi, 209

G

galactic rotation curves, 7, 64

gauge potential, 32, 33, 34, 35, 38

Gauss-Bonnet theorem, iv, 2, 41, 55, 59, 66, 157, 160
Gaussian, 28

generad linear group, 35

geons, 5

Goddard Space Flight Center, vi

Guilfoyle, 4, 61

Halliburton, vi, 209
Havas, 4

Hehl, 14, 15
Hénon-Heiles, 7
Herzig, vi
Hestenes, 167
Hevener, vi

Heyl, 4, 12, 14
Hiscock, vi

Hulse, 83

Icarus, perihelion precession of, 95, 117

index antisymmetry, Riemann tensor, 38

inertial frame, 176

Infeld, 117

integrability, 8, 82, 128
integrability conditions, 55, 127
isoscalar, 34

isospin, 32, 34

isotensor, 34

isotopic spin transformations, 32
isovector, 32

J
Jacobi Identity, 169
Jaffe, vi
JPL, vi

K
Karade, 117

Kazanas, vi, 7, 64, 186
kernel-index notation, 170
Kerr solution, vi, 7, 8, 21, 128, 129, 130, 131
Kibble, 2, 214

Kilmister, 2, 214

Kline, vi

Korteweg-deVries, 7

Kottler's Solution, 53, 62, 162
Kronecker delta, 14, 169
Kruskal, 7, 120

Kudar, 117

Laase, vi

Lanczos, 2, 39, 41, 56, 58, 159, 214
Leutwyler, 4

librational motion, 125

Lichnerowicz, 2, 214

Lie algebra, 33, 37, 165, 169, 172, 176
Lie sub-algebra, 173

light bending, 1, 91, 122

light rays, 8, 10, 72, 74, 87, 91, 92, 126
Lindquist, 7
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linear stability analysis, 8, 11, 77, 78, 82, 92, 100, 115, Papapetrou, 6, 12
118 Pauli, 2, 33, 39, 214
Littleton, vi Pavelle, 3, 45, 52, 53, 54, 148
Littlewood'’s Theory, 23, 41, 49 Pavelle-Thompson solution, 47, 48, 49, 52, 56, 59, 71
Loos, vi, 3, 214 Pawlowski, 67
Lorentz boost, 176, 177 Penrose, 30, 120
Lorentz group, 2, 6, 35, 36 Petrov, 3, 45, 61
Pirani, 23, 41, 45, 55, 71, 185
M Poincaré group, 4, 15
proton gas, 9
Marsden, 7 Pullin, vi
Marx, vi Puskar, vi
Mathematica Software, iii, iv, 100, 118, 132, 138, 179,
193 Q
MathTensor Software, 132, 138, 157, 161, 179
Maymon, vi quadratic invariants, 39
Mentzell, vi quantization, 5
Milsom, vi
Minkowski metric, 36 R
Misner, 7, 38, 41, 81
monopole character, 15 Raczka, 67
Rathod, 117
N rectilinear coordinate system, 169
redshift, 10, 46, 74, 90
naked singularity, 11, 30, 31, 84, 92, 99, 106, 109, Ricci scalar, 1, 4, 22, 23, 27, 46, 48, 49, 50, 51, 53, 60,
119, 193 66
Newtonian limit, 4, 5, 13, 23, 24, 25, 26, 45, 75, 190 Ricci tensor, 1, 4, 6, 14, 15, 16, 17, 21, 41, 45, 46, 53,
Newtonian orbits, 10 55, 59, 60, 61, 65, 66, 127, 158
Ni, 3, 45, 46, 48, 53, 54, 59, 147, 148, 162 Riegert, 64, 68
Nordstréom’s Theory, 4, 6, 7, 26, 48, 64, 71 Riemann tensor, iii, v, 1, 2, 13, 14, 31, 32, 35, 38, 39,
Nucilli, vi 46, 55, 60, 61, 63, 64, 127, 138, 139, 159, 179
numerical studies, 31 Riemannian space, 1, 32
Rotter, vi
O Rovelli, vi

Ruffini, 9, 21, 84, 92
Ohanian, 9, 21, 84, 92

orthogonal group, 36, 168, 170 S

P saddle-center bifurcation, v, 73, 87, 102, 106, 107,
108, 111, 112

Schouten, 6, 12, 13, 14, 15, 18, 38, 45, 64, 176

Schradinger, 14

Segreé classification, 4, 6, 61

Palaskar, 95, 117
Palatini Variational Procedure, v, 2, 5, 6, 12, 14, 32,
37, 39, 40, 41, 54, 56, 57, 67, 127



separatrix, v, 9, 11, 73, 84, 85, 86, 87, 88, 92, 94, 116,
124, 129

Severino, vi

Shankar, 3

Shuttlesworth, vi

Shutz, 76

Siklos, 5, 6, 61

Simpson, vi

Smoalin, vi

spacetime manifold, 12, 32, 35

spin connection, 15, 38

spinor, 15, 33, 167

Stachel, 6, 12

Stauber, vi

Stegun, 96, 120

stellar interior, 9

Stephenson, 2, 12, 39, 214

Stewart, vi

stress energy tensor, 23, 26, 27, 60

Strogatz, vi, 77, 78, 87, 88

superstring, 5

Szydlowski, 8

Teli, 95, 117

tensor dendity, 18

tetrads, 36, 37, 38, 42

Thorne, vi, 8, 31, 81

Tolman, 60

torsion, 6, 12, 13, 14, 15, 16, 18, 19, 20, 38, 42, 44

torsion trace, 15, 19

transcritical bifurcation, v, 10, 11, 74, 87, 102, 103,
106, 107, 108, 111, 112

transvection, 14, 15
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Tresdt, vi, 3, 12, 34, 209, 214

Treder, 95, 117
Tsantilis, 67

U
units, 24, 27, 28, 30, 63, 76, 190
Utiyama, 2, 214
Uzes, 34

Vv

variationa procedure, v, 2, 5, 6, 12, 13, 14, 15, 16, 17,
27,32, 34, 37, 40, 41, 54, 55, 56, 57, 64, 66, 67,
127

vierbeins, 36

volume element, 22

Wald, 63, 81, 84

Weinberg, 21, 55

Weldon, vi, 9, 209

Weyl tensor, 46, 48, 49, 50, 51, 53, 55, 60, 61, 65, 66,
71,184

Wilder, vi, 209

Wilson, vi

Y

Yang-Mills gauge theory, ii, 4, 6, 32, 35, 36, 38
Yasskin, 4, 5, 48
Young, vi

Zurbuch, vi
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